In this paper had been studied the characterization of the nanocatalyst (NiO) Mesh electrodes. For fuel cell. The catalyst is prepared and also the electrodes The structural were studied through the analysis of X-ray diffraction of the prepared nanocatalyst for determining the yielding phase and atomic force microscope to identify the roughness of prepared catalyst surface, Use has been nanocatalyst led to optimization of cell voltage, current densities & power for a fuel cell.
In this work, the effect of preparing a composite of copper oxide nanoparticles with carbon on some of its optical properties was studied. The composite preparing process was carried out by exploding graphite electrodes in an aqueous suspension of copper oxide. The properties of the plasma which is formed during the explosion were studied using emission spectroscopy in order to determine the most important elements that are present in the media. The electron’s density and their energy, which is the main factor in the composite process, were determined. The particle properties were studied before and after the exploding process. The XRD showed an additional peak in the copper oxides pattern corresponding to the hexagonal graphite struct
... Show MorePermanent deformation, fatigue and thermal cracking are the three typical distresses of flexible pavement. Using hydrated lime (HL) into the conventional limestone mineral additive has been widely practiced, including in Europe, to improve the mechanical properties of hot mix asphalt (HMA) concrete and as the result the durability of the constructed pavement. Large number of experimental studies have been reported to find the optimum addition of HL for the improvement on HMA concrete mechanical properties, moisture susceptibility and fatigue resistance. Pavement in service is under complex thermomechanical stress-strain conditions due to coupled atmospheric and surrounding environment temperature variation and the traffic loading. To predic
... Show MoreIn this article, new Schiff base ligand LH-prepared Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Pd(II), and Pt(II) materials were analyzed using spectroscopy (1 Metal: 2 LH). The ligand was identified using techniques such as FTIR, UV-vis, 1H-13C-NMR, and mass spectra, and their complexes were identified using CHN microanalysis, UV-vis and FTIR spectral studies, atomic absorption, chloride content, molar conductivity measurements, and magnetic susceptibility. According to the measurements, the ligand was bound to the divalent metal ions as a bidentate through oxygen and nitrogen atoms. The complexes that were created had microbicide activity against two different bacterial species and one type of fungus. DPPH techniques were bei
... Show MoreWorldwide attention is being focused on nanocrystalline zeolites and they are replacing conventional ones due to their pronounced potential in many fields. In this study, NaY zeolite has been prepared hydrothermally using sol –gel method and modified to the proton type by ion –exchange process. Characterization is made using X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Atomic force microscopy (AFM), Brunauer –Emmet- Teller (BET) nitrogen adsorption method, Ammonia Temperature programmed desorption (NH3-TPD) and Scanning electron microscopy( SEM). The effect of aging time, silica to alumina ratio is studied and the results sh
... Show MoreThe reaction of(2-oxo-2H-chromen-3-Carbonyl chloride)(k1) with hydrazine in boiling ethanol gives the hydrazide(K2).When compound (k2) reacts with various aromatic aldehydes ,the corres ponding Schiff bases(k3–k4) achieve new series of thiazotidines (k5–k6) and azetidinones (k7–k8) obtained from the reactions of appropriate Schiff bases with mercapto acetic acid and chloro acetyl chloride respectively. All the compounds are characterized by FT-IR,1H-NMR and GC-Ms.
Abstract: A home-made dc sputtering is characterized by cathode potential of 250-2500 V and sputtering gas pressures of (3.5×10-2 – 1.5) mbar. This paper studies in experiment the breakdown of argon, nitrogen, and oxygen in a uniform dc electric field at different discharge gaps and cathode potentials. Paschen curves for Argon, Nitrogen, and oxygen are obtained by measuring the breakdown voltage of gas within a stainless steel vacuum chamber with two planar, stainless steel electrodes. The Paschen curves in Ar, N2, and O2 gases show that the breakdown voltage between two electrodes is a function of pd (The product of the pressure inside the chamber and distance between the electrodes). Current-voltage characteristics visualization of the
... Show More