Increasing material prices coupled with the emission of hazardous gases through the production and construction of Hot Mix Asphalt (HMA) has driven a strong movement toward the adoption of sustainable construction technology. Warm Mix Asphalt (WMA) is considered relatively a new technology, which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt. The Resilient modulus (Mr) which can be defined as the ratio of axial pulsating stress to the corresponding recoverable strain, is used to evaluate the relative quality of materials as well as to generate input for pavement design or pavement evaluation and analysis. Based on the aforementioned preface, it is possible to conclude that there is a real need to develop a predictive model for the resilient modulus of the pavement layer constructed using WMA. Within the experimental part of this study, 162 cylindrical specimens of WMA were prepared with dimensions of 101.6 mm in diameter and 63.5 mm in thickness. The specimens were subjected to the indirect tension test by pneumatic repeated loading system (PRLS) to characterize the resilient modulus. The test conditions (temperature and load duration) as well as mix parameters (asphalt content, filler content and type, and air voids) are considered as variables during the specimen’s preparation. Following experimental part, the statistical part of the study includes a model development to predict the Mr using Minitab vs 17 software. The coefficient of determination (R2) is 0.964 for the predicted model which is referred to a very good relation obtained. The Mr value for the WMA is highly affected by the temperature and moderately by the load duration, whereas the mix parameters have a lower influence on the Mr.
During the last two decades, nanomaterial application has gained a significant attraction into asphalt technology due to their effect in enhancing asphalt binder improving the asphaltic mixture. This study will modify the asphalt binder with two different nano types, nano SiO2 and CaCO3, at levels ranging from 1% to 7%. The resulting optimum nano-modified Asphalt will be subject to a series of rheological tests, including dynamic shear rheometer (DSR), Viscosity, and bending beam rheometer (BBR) to determine asphalt binder sensitivity towards low-medium-high temperature range. Results indicate that both nano types improved the physical characteristics of Asphalt, and 5% by weight of Asphalt was suggested as a reasonable dosage of nano-SiO2
... Show MoreAlmost all thermal systems utilize some type of heat exchanger. In a lot of cases, evaporators are important for systems like organic Rankine cycle systems. Evaporators give a share in a large portion of the capital cost, and their cost is significantly attached to their size or transfer area. Open-cell metal foams with high porosity are taken into consideration to enhance thermal performance without increase the size of heat exchangers. Numerous researchers have tried to find a representation of the temperature distribution closer to reality due to the different properties between the liquid and solid phases. Evaporation heat transfer in an annular pipe of double pipe heat exchanger (DPHEX) filled with cooper foam is investigated numerical
... Show MoreThe constructivist learning model is one of the models of constructivist theory in learning, as it generally emphasizes the active role of the learner during learning, in addition to that the intellectual and actual participation in the various activities to help students gain the skills of analyzing artistic works. The current research aims to know the effectiveness of the constructivist learning model in the acquisition of the skills of the Institute of Fine Arts for the skills of (technical work analysis). To achieve the goal, the researcher formulated the following hypothesis: There are no statistically significant differences between the average scores of the experimental group students in the skill test for analyzing artworks befor
... Show MoreThe Mauddud reservoir, Khabaz oil field which is considered one of the main carbonate reservoirs in the north of Iraq. Recognizing carbonate reservoirs represents challenges to engineers because reservoirs almost tend to be tight and overall heterogeneous. The current study concerns with geological modeling of the reservoir is an oil-bearing with the original gas cap. The geological model is establishing for the reservoir by identifying the facies and evaluating the petrophysical properties of this complex reservoir, and calculate the amount of hydrocarbon. When completed the processing of data by IP interactive petrophysics software, and the permeability of a reservoir was calculated using the concept of hydraulic units then, there
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreIn present work the effort has been put in finding the most suitable color model for the application of information hiding in color images. We test the most commonly used color models; RGB, YIQ, YUV, YCbCr1 and YCbCr2. The same procedures of embedding, detection and evaluation were applied to find which color model is most appropriate for information hiding. The new in this work, we take into consideration the value of errors that generated during transformations among color models. The results show YUV and YIQ color models are the best for information hiding in color images.
Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreThe purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.
Physical model tests were simulated non-aqueous phase liquid (NAPL) spill in two-dimensional
domain above the water table. Four laboratory experiments were carried out in the sand-filled
tank. The evolution of the plume was observed through the transparent side of this tank and the
contaminant front was traced at appropriate intervals. The materials used in these experiments
were Al-Najaf sand as a porous medium and kerosene as contaminant.
The results of the experiments showed that after kerosene spreading comes to a halt (ceased) in
the homogeneous sand, the bulk of this contaminant is contained within a pancake-shaped lens
situated on top of the capillary fringe.