The rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which can be quantified as a biomarker. The objective of the study reported in this paper is to develop robust EEG-based biomarkers for detecting AD in its early stages. We present a new approach to quantify the slowing of the EEG, one of the most consistent features at different stages of dementia, based on changes in the EEG amplitudes (ΔEEG A ). The new approach has sensitivity and specificity values of 100% and 88.88%, respectively, and outperformed the Lempel-Ziv Complexity (LZC) approach in discriminating between AD and normal subjects.
Toxoplasma gondii has a worldwide distribution and it is one of the most prevalent infectious agents in Iraq. The study was conducted on 200 serum samples of unmarried female university of students age ranged between 18 to 26 years to detect Toxoplasma gondii antibodies. The aim of this study was to detect T. gondii antibodies among unmarried female students in Iraqi universities using different serological tests. Seventy six (38%) serum samples out of 200 subjects were positive for toxoplasma antibodies by Latex agglutination test (LAT). Among 76 LAT sera positive ,only 58 (29%) serum samples were positive with toxoplasma IgG ELISA test , however , the results of IgM ELISA assay were positive only for 3 (1.5%) unmarried
... Show MoreNon-steroidal anti-inflammatory drugs (NSAIDs) contain free –COOH which thought to be responsible for the GI irritation associated with all traditional NSAIDs. The esterification of this group is one of an approach to ultimate aim for reduce the gastric irritation; so in this study we synthesized and preliminarily evaluated new ester compounds as new analogues with expected selectivity toward COX-2 enzyme. Synthetic procedures have been successfully developed for the generation of the target compounds (III a and b). The synthetic approach involved multi-steps procedures which include: Synthesis of 4-hydroxy benzene sulphonamide ( I b ), synthesis of Naproxen and Ibuprofen acyl chloride and then reacting them with 4-hydroxy benzene sulphon
... Show MoreBackground/Objectives: Nonsurgical periodontal treatment (NSPT) is the gold-standard technique for treating periodontitis. However, an individual’s susceptibility or the inadequate removal of subgingival biofilms could lead to unfavorable responses to NSPT. This study aimed to assess the potential of salivary and microbiological biomarkers in predicting the site-specific and whole-mouth outcomes of NSPT. Methods: A total of 68 periodontitis patients exhibiting 1111 periodontal pockets 4 to 6 mm in depth completed the active phase of periodontal treatment. Clinical periodontal parameters, saliva, and subgingival biofilm samples were collected from each patient at baseline and three months after NSPT. A quantitative PCR assay was us
... Show MoreIn this research, 5- membered heterocyclic compounds as oxazolidine-5-one J1-J5 derivatives were prepared using primary aromatic amine, aromatic carbonyl compounds and chloroacetic acid. By combining primary aromatic amines and aromatic carbonyl compounds, Schiff's bases were synthesized. Schiff bases are used with the chloroacetic acid compound to prepare oxazolidine-5-one J1-J5 derivatives. The compounds J1-J5 were described using NMR spectroscopy and FT-IR. .The biological efficacy was evaluated according to maximum inhibitory concentrations (MICs) toward Staphyloccoccus aureus and Esherichia coli. The best MIC was 210 μg ml-1 for J4 against the two pathogenic bacteria, while J1, J4, and J1 did not show any inhibitory effect against all
... Show MoreThis article reviews the technical applicability of nanofiltration membrane process for the removal of nickel, lead, and copper ions from industrial wastewater.
Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50, 100, 150 and 200 ppm), under different pressures (1, 2, 3 and 4 bar), temperatures (10, 20, 30 and 40 oC), pH (2, 3, 4, 5 and 5.5), and flow rates (1, 2, 3 and 4 L/hr), were prepared and subjected treated by NF systems in the laboratory. Suitable NF membrane was chosen after testing a number of NF membranes (University of Technology-Baghdad), in terms of production and removal. NF system was capable of removing more than (85%, 78%, and 66% for Ni(II
... Show MoreIn present work an investigation for precise hole drilling via continuous wave (CW) CO2 laser at 150 W maximum output power and wavelength 10.6 μm was achieved with the assistance of computerized numerical controlled (CNC) machine and assist gases. The drilling process was done for thin sheets (0.1 – 0.3 mm) of two types of metals; stainless steel (sst) 321H, steel 33 (st). Changing light and process parameters such as laser power, exposure time and gas pressure was important for getting the optimum results. The obtained results were supported with computational results using the COMSOL 3.5a software code.