Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
A solid Phase Extraction (SPE) cartridges followed by HPLC-UV method is described for the simultaneous quantitative determination of benzidine (BZ) and its substituted 3, 3’-dichlorobenzidine (DCB) and 3, 3’-Dimethylbenzidine (DMB). The Benzidines were separated by liquid chromatography using a C-18 column with UV detector at wave length of 280nm. The mode of Flow was isocratic. The mobile phase was consisted of 75:25 methanol: water, column temperature 50C°, and Flow Rate 1.8ml/min. Calibration curves were linear (R2 = 0.9979-0.9995). LOD (26.36-33.67) µg/L, LOQ (109.98-186.11) µg/L, the Robustness (2.99-4.35), Ruggedness (2.93-3.65).Conditions of extraction by (SPE) cartridges were optimized, the resin used is Octadecyl silica (ODS
... Show MoreThe primary focus of the study factor reverse polymerization styrene polymer kinetics and distribution weight Aljaia in Blma Aldhur free reverse The study was conducted wi Mamahakah and using the Monte Carlo method
The simulation is the oldest theory in art, since it appeared in the Greek aesthetic thought of the philosopher Plato, as we find in many of the thinkers and philosophers over a wide period of time to reach our world today. Our fascination with art in general and design art in particular is due to the creativity and innovations of the artist through the simulation, as well as the peculiarities in this simulation, which give objects signs and signals that may have an echo that sometimes does not exist in their physical reality.
The real representation of life and design construction, descriptions of the expression of each of them in the form of intellectual construction and the ideas of producti
... Show MoreThis research a study model of linear regression problem of autocorrelation of random error is spread when a normal distribution as used in linear regression analysis for relationship between variables and through this relationship can predict the value of a variable with the values of other variables, and was comparing methods (method of least squares, method of the average un-weighted, Thiel method and Laplace method) using the mean square error (MSE) boxes and simulation and the study included fore sizes of samples (15, 30, 60, 100). The results showed that the least-squares method is best, applying the fore methods of buckwheat production data and the cultivated area of the provinces of Iraq for years (2010), (2011), (2012),
... Show MoreThe objective of this research paper is two-fold. The first is a precise reading of the theoretical underpinnings of each of the strategic approaches: "Market approach" for (M. Porter), and the alternative resource-based approach (R B V), advocates for the idea that the two approaches are complementary. Secondly, we will discuss the possibility of combining the two competitive strategies: cost leadership and differentiation. Finally, we propose a consensual approach that we call "dual domination".
In this paper, we investigate the impact of fear on a food chain mathematical model with prey refuge and harvesting. The prey species reproduces by to the law of logistic growth. The model is adapted from version of the Holling type-II prey-first predator and Lotka-Volterra for first predator-second predator model. The conditions, have been examined that assurance the existence of equilibrium points. Uniqueness and boundedness of the solution of the system have been achieve. The local and global dynamical behaviors are discussed and analyzed. In the end, numerical simulations are confirmed the theoretical results that obtained and to display the effectiveness of varying each parameter
Flow-production systems whose pieces are connected in a row may not have maintenance scheduling procedures fixed because problems occur at different times (electricity plants, cement plants, water desalination plants). Contemporary software and artificial intelligence (AI) technologies are used to fulfill the research objectives by developing a predictive maintenance program. The data of the fifth thermal unit of the power station for the electricity of Al Dora/Baghdad are used in this study. Three stages of research were conducted. First, missing data without temporal sequences were processed. The data were filled using time series hour after hour and the times were filled as system working hours, making the volume of the data relativel
... Show MoreA numerical simulation is made on the thermal lensing effect in an laser diode end-pumped Nd:YAG laser rod. Based on finite element method (FEM), the laser rod temperature distribution is calculated and the focal length is deduced for a Gaussian and super-Gaussian pump beam profiles.
At the pump power of 20W, the highest temperature located at the center of end-pumped face was 345K, and the thermal lens focal length was 81.4mm along the x-z axis.
The results indicate that the thermal lensing effect sensitively depend on the pump power, waist radius of the pump beam and the pump distribution in a laser rod geometry.
In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application