The catalytic activity of faujasite type NaY catalysts prepared from local clay (kaolin) with different Si/Al ratio was studied using cumene cracking as a model for catalytic cracking process in the temperature range of 450-525° C, weight hourly space velocity (WHSV) of 5-20 h1, particle size ≤75μm and atmospheric pressure. The catalytic activity was investigated using experimental laboratory plant scale of fluidized bed reactor.
It was found that the cumene conversion increases with increasing temperature and decreasing WHSV. At 525° C and WHSV 5 h-1, the conversion was 42.36 and 35.43 mol% for catalyst with 3.54 Si/Al ratio and Catalyst with 5.75 Si/Al ratio, respectively, while at 450° C and at the same WHSV, the conversion w
CO2 laser (10.6 μm) is the most often used laser in the oral surgery due to its high absorption by water of the oral tissues. Several benefits of the use of CO2 laser have been reported for oral surgical procedures. This study aims to evaluate the effect of CO2 laser on soft and hard oral tissues (in vitro study). This study was done on fresh tissues from sheep’s head. CO2Surgical Laser with different operation modes was used; 0.2 mm spot size using different laser parameters on the tongue, and bone making holes, incisions and cutting. The depths and widths of holes and incisions were measured using endodontic file under magnification. The speed of incisions was calculated and the required time for cutting was measured using sport clo
... Show MoreIn this work laser detection and tracking system (LDTS) is designed and implemented using a fuzzy logic controller (FLC). A 5 mW He-Ne laser system and an array of nine PN photodiodes are used in the detection system. The FLC is simulated using MATLAB package and the result is stored in a lock up table to use it in the real time operation of the system. The results give a good system response in the target detection and tracking in the real time operation.
A theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account both plasma dynamics and time variation of incident laser pulse (i.e. pulse shape or profile).Shock tube relations were employed in formulating plasma dynamics over target surface. Gaussian function was chosen in formulating the pulse profile in the present modeling
The prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).
Abstract: The use of indirect, all-ceramic restorations has grown in popularity among dentists. Studies have demonstrated that for indirect ceramic restorations to be effective over time, cement and ceramic must be bonded in a stable manner. Chemical, mechanical, and laser irradiation are among the methods used to precondition ceramic surfaces in order to increase bond strength.The objective of the study: This study was performed to investigate the roughness values and surface topography of lithium disilicate glass-ceramic treated with conventional methods and different Er,Cr:YSGG, and fractional CO2 laser conditioning parameters.Material and methods:<
... Show MoreBackground: The potential use of zinc oxide and other metal oxide nanoparticles in biomedical are gaining interest in the scientific and medical communities, largely due to the physical and chemical properties of these nanomaterials. The present work revealed the effect of zinc oxide nanoparticles (ZnONPs) on the total salivary peroxidase enzyme activity of human saliva in comparison to de-ionized water. Materials and methods: Forty eight unstimulated saliva samples were collected from dental students/University of Baghdad 18-22 years. Then measure the total salivary peroxidase activity first without any addition to human saliva as a control, second with dilution the saliva with de-ionized water, and third with zinc oxide nanoparticles in c
... Show MoreThe ceramic compound Mg1-xSixAl2O4 (x= 0, 0.1, 0.2, 0.3, 0.4) was prepared from nano powder of Al2O3 and MgO doped with Nano powder of SiO2 at different molar ratios. The specimens were prepared by standard chemical solid reaction technique and sintered at 1450 oC. Structure of the specimens was analyzed by using X-ray diffraction (XRD). The X-ray patterns of the specimens showed the formation of pure simple cubic spinel structure MgAl2O4 phase with space group of ̅ . The average grain size and surface topology were studied by atomic force microscopy. The results showed that the average grain size was about 73-90 nm. The DC electrical properties of the specimen were measured. The apparent density was found to increase and the porosity a
... Show MoreThe influence of the reaction gas composition during the DC magnetron sputtering process on the structural, chemical and optical properties of Ce-oxide thin films was investigated. X-ray diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, at the surface of the films prepared at oxygen/argon flow ratios between 0% and 7%, whereas the films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%. Various optical parameters for the thin films (including an optical band gap in the range of 2.25–3.
... Show More