The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of non-linear partial differential equations with small amount of computations does not require to calculate restrictive assumptions or transformation like other conventional methods. In addition, several examples clarify the relevant features of this presented method, so the results of this study are debated to show that this method is a powerful tool and promising to illustrate the accuracy and efficiency for solving these problems. To evaluate the results in the iterative process we used the Matlab symbolic manipulator.
There are many different methods for analysis of two-way reinforced concrete slabs. The most efficient methods depend on using certain factors given in different codes of reinforced concrete design. The other ways of analysis of two-way slabs are the direct design method and the equivalent frame method. But these methods usually need a long time for analysis of the slabs.
In this paper, a new simple method has been developed to analyze the two-way slabs by using simple empirical formulae, and the results of final analysis of some examples have been compared with other different methods given in different codes of practice.
The comparison proof that this simple proposed method gives good results and it can be used in analy
... Show MoreBecause the Coronavirus epidemic spread in Iraq, the COVID-19 epidemic of people quarantined due to infection is our application in this work. The numerical simulation methods used in this research are more suitable than other analytical and numerical methods because they solve random systems. Since the Covid-19 epidemic system has random variables coefficients, these methods are used. Suitable numerical simulation methods have been applied to solve the COVID-19 epidemic model in Iraq. The analytical results of the Variation iteration method (VIM) are executed to compare the results. One numerical method which is the Finite difference method (FD) has been used to solve the Coronavirus model and for comparison purposes. The numerical simulat
... Show MoreThis study emphasizes the infinite-boundary integro-differential equation. To examine the approximate solution of the problem, two modified optimization algorithms are proposed based on generalized Laguerre functions. In the first technique, the proposed method is applied to the original problem by approximating the solution using the truncated generalized Laguerre polynomial of the unknown function, optimizing coefficients through error minimization, and transforming the integro-differential equation into an algebraic equation. In contrast, the second approach incorporates a penalty term into the objective function to effectively enforce boundary and integral constraints. This technique reduces the original problem to a mathematical optimi
... Show MoreThis paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.
Simulated annealing (SA) has been an effective means that can address difficulties related to optimization problems. is now a common discipline for research with several productive applications such as production planning. Due to the fact that aggregate production planning (APP) is one of the most considerable problems in production planning, in this paper, we present multi-objective linear programming model for APP and optimized by . During the course of optimizing for the APP problem, it uncovered that the capability of was inadequate and its performance was substandard, particularly for a sizable controlled problem with many decision variables and plenty of constraints. Since this algorithm works sequentially then the current state wi
... Show MoreIn this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
Degenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-pose
In this work, an analytical approximation solution is presented, as well as a comparison of the Variational Iteration Adomian Decomposition Method (VIADM) and the Modified Sumudu Transform Adomian Decomposition Method (M STADM), both of which are capable of solving nonlinear partial differential equations (NPDEs) such as nonhomogeneous Kertewege-de Vries (kdv) problems and the nonlinear Klein-Gordon. The results demonstrate the solution’s dependability and excellent accuracy.
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
Selon l’expérience acquise lors de l’apprentissage de français en tant qu’étudiant au département de français, mais aussi lors de la période en tant qu’enseignant au même département, il est à constater, que le français oral est toujours loin d’être à la portée de nos étudiants au département de français.
Est-il possible de mettre à l’examen ce problème, et d’essayer d’en trouver les raisons ?
Voila donc le problème qui sera débattu dans les pages suivantes de cette recherche.
Si toutes les langues du monde ont en commun certaines ’’caractéristiques générales, elles ne sont pas pour autant les réalisations parallèles d’un modèle unique’’(1).
L’appr
... Show More