Far infrared photoconductive detectors based on multi-wall carbon nanotubes (MWCNTs) were fabricated and their characteristics were tested. MWCNTs films deposited on porous silicon (PSi) nanosurface by dip and drop coating techniques. Two types of deposited methods were used; dip coating sand drop –by-drop methods. As well as two types of detector were fabricated one with aluminum mask and the other without, and their figures of merits were studied. The detectors were illuminated by 2.2 and 2.5 Watt from CO2 of 10.6 m and tested. The surface morphology for the films is studied using AFM and SEM micrographs. The films show homogeneous distributed for CNTs on the PSi layer. The root mean square (r.m.s.) of the films surface roughness indicates a smooth surface of the synthesized films. The Raman spectrum at room temperature for MWCNTs, are dominated by the two typical lines at about 1335.4 cm-1 (D line) and 1563.2 cm-1 (G line) assigned to the disorder induced by defects and curvature in the nanotubes lattice, and to the in-plane vibration of the C–C bonds, respectively. The results reflect a good IR radiation sensitivity and photoconductive gain, while the specific detectivity was in order of 107 cm.Hz1/2/W.
Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreFace recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show MoreThe art of preventing the detection of hidden information messages is the way that steganography work. Several algorithms have been proposed for steganographic techniques. A major portion of these algorithms is specified for image steganography because the image has a high level of redundancy. This paper proposed an image steganography technique using a dynamic threshold produced by the discrete cosine coefficient. After dividing the green and blue channel of the cover image into 1*3-pixel blocks, check if any bits of green channel block less or equal to threshold then start to store the secret bits in blue channel block, and to increase the security not all bits in the chosen block used to store the secret bits. Firstly, store in the cente
... Show MoreIn this study, concentrations of radon and uranium were measured for twenty six samples of soil. The radon concentrations in soil samples measured by registrant alpha-emitting radon (222Rn) by using CR-39 track detector. The uranium concentrations in soil samples measured by using registrar fission fragments tracks in CR-39 track detector that caused by the bombardment of U with thermal neutrons from 241 Am-Be neutron source that has flux of 5 ×103n cm-2 s-1.
The concentrations values were calculated by a comparison with standard samples The results show that the radon concentrations are between (91.931-30.645Bq/m3).
The results show that also the uranium concentrat
In this study, concentrations of radon were measured for seventeen samples of soil distributed in three Sulphuric Spring, in addition to other regions as a background in Hit City in AL-Anbar Governorate. The radon concentrations in soil samples measured by using alpha-emitters registration that emits from radon (222Rn) in (CR-39) track detector. The concentrations values were calculated by a comparison with standard samples. The results show that the radon concentrations in first spring varies from (258.253- 347.762 Bq/m3), second spring (230.374-305.209 Bq/m3), third spring (292.002-336.023 Bq/m3) and the average radon concentration in other regions (187.821 Bq/m3). As a conclusion of the study radon concentration in Sulphuric Spring is r
... Show MoreCR-39 is a solid state nuclear track detector (SSNTD) that has been used in many research areas. In spite of the assumption that the CR-39 detectors are insensitive to beta and gamma rays, irradiation with these rays can have significant effects on the detector properties. In this study, beta and gamma rays mass attenuation coefficients μ/ρ (cm2 g-1) for the CR-39 detector have been measured using NaI(Tl) scintillation spectrometer along with a standard geometrical arrangement in the energy region of (0.546-2.274) MeV beta rays and standard gamma sources having energy 0.356, 0.5697, 0.6617 and 1.063 MeV. The total atomic cross-section (σtot), total electronic cross-section (σT E) and the effective atomic number (Zeff) of gamma rays a
... Show MoreThe specific activities of the natural radionuclides U-238 and Th-
232 and K-40 in 14 soil samples collected from different sites from
AL-Mustansiriyah university at two depths (topsoil "surface" and
20cm depth) were be investigated using gamma ray spectrometer
3"x3" NaI(Tl) scintillation detector.
The analysis of the energy spectra of the soil samples show that
these samples have specific activities ranging with (16.08-51.11)
Bq/kg for U-238, (14.79-52.29) Bq/kg for Th-232 and (191.08-
377.64) Bq/kg for K-40, with an average values of 29.37, 34.14 and
289.62 Bq/kg for U-238, Th-232, k-40 respectively. The radiation
hazard parameters of the natural radionuclides; radium equivalent
activity (Raeq), gamma a