This paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spent to achieve the best classification accuracy.
Dust storms are typical in arid and semi-arid regions such as the Middle East; the frequency and severity of dust storms have grown dramatically in Iraq in recent years. This paper identifies the dust storm sources in Iraq using remotely sensed data from Meteosat-spinning enhanced visible and infrared imager (SEVIRI) bands. Extracted combined satellite images and simulated frontal dust storm trajectories, using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, are used to identify the most influential sources in the Middle East and Iraq. Out of 132 dust storms in Iraq during 2020–2023, the most frequent occurred in the spring and summer. A dust source frequency percentage map (DSFPM) is generated using ArcGIS so
... Show MoreA frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm co
... Show MoreEmotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show Morethe study considers the optical classification of cervical nodal lymph cells and is based on research into the development of a Computer Aid Diagnosis (CAD) to detect the malignancy cases of diseases. We consider 2 sets of features one of them is the statistical features; included Mode, Median, Mean, Standard Deviation and Maximum Probability Density and the second set are the features that consist of Euclidian geometrical features like the Object Perimeter, Area and Infill Coefficient. The segmentation method is based on following up the cell and its background regions as ranges in the minimum-maximum of pixel values. The decision making approach is based on applying of Minimum Dista
Autism is a lifelong developmental deficit that affects how people perceive the world and interact with each others. An estimated one in more than 100 people has autism. Autism affects almost four times as many boys than girls. The commonly used tools for analyzing the dataset of autism are FMRI, EEG, and more recently "eye tracking". A preliminary study on eye tracking trajectories of patients studied, showed a rudimentary statistical analysis (principal component analysis) provides interesting results on the statistical parameters that are studied such as the time spent in a region of interest. Another study, involving tools from Euclidean geometry and non-Euclidean, the trajectory of eye patients also showed interesting results. In this
... Show MoreIn the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used
... Show More