Leishmania species are intracellular protozoan parasites that spend a portion of their life cycle in the midgut of sand flies and the remainder in the tissues of mammals. These parasites, which cause a class of human disorders known as leishmaniasis, live mostly in macrophages, where they multiply and survive by employing a variety of defense mechanisms against the oxidative stress and acidity generated by these immune cells. To help control their reaction to heat stress, they also produce heat shock proteins. Furthermore, the promastigote form has a glycocalyx that is necessary for colonizing the gut wall of the sand fly and completing its life cycle. Consequently, a variety of virulence factors contribute to the parasite's pathoge
... Show MoreA recurrent condition that affects up to 10% of people worldwide is gastric ulceration illness. The existence of gastric juice pH with the lowering of mucous defences is prerequisites for the development of chronic ulcers. The main variables affecting the mucosa susceptibility to damage include Helicobacter pylori (H. pylori) infections or non-steroidal anti-inflammatory medicines (NSAIDs). Proton pump inhibitors (PPIs) including histamine-2 (H2) receptor inhibitors, two common therapies for peptic ulcers, have been linked to side impacts, recurrence or a variety of pharmacological combinations. Conversely, therapeutic herbs or the chemicals they contain may be used to cure or eliminate a wide range of illnesses. Therefore, prominent pharma
... Show MoreThis study examines the structural performance of concrete-encased pultruded Glass Fiber Reinforced Polymer (GFRP) I-sections with shear connections. It specifically focuses on how different parameters affect the latter’s ductility, flexural strength, and load-carrying capacity. The key variables studied include various shear connector types, spacing, and geometries, as well as the compressive strength of concrete and the properties of GFRP. The finite element modeling and experimental validation show that the shear connectors significantly improve the ductility, ultimate capacity, and load transmission efficiency. The present review emphasizes that the shear connectors greatly enhance the structural performance when they are prop
... Show MorePhthalimide formation of Phthalic anhydride with various amines using microwave or without a method with the difference of the catalyst used in a prepared Phthalimide, either structure general are C6H4CONRCO and used as starting materials in synthesis several compounds derivative phthalimides are an important compounds because spectrum wide biological activities including Antimicrobial activity, anticonvulsant activity, Anti-inflammatory activity,Analgesic activity, Anti- influenza activity and Thromboxane inhibitory activity
In this work, we focused on studying 1,4-naphthoquinones and their derivatives, and knowing the methods of preparing them using different auxiliary agents and forming derivatives containing heterocyclic rings, active groups and saturated rings containing heterogeneous elements . In addition, due to their strong antibacterial, antifungal and anticancer activity, 1,4-naphthoquinone compounds biological importance and are considered a source of various pharmaceutical compounds.
Background: Elastomeric chains are used to generate force in many orthodontic procedures, but this force decays over time, which could affect tooth movement. This study aimed to study the force degradation of elastomeric chains. Data and Sources: An electronic search on Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, LILACS, and PubMed was made, only articles written in English were included, up to January 2022.Study selection: Fifty original articles, systematic reviews, and RCTs were selected. Conclusion: Tooth movement, salivary enzymes, alcohol-containing mouthwash, whitening mouthwash, and alkaline and strong acidic (pH <5.4) solutions all have a significant impact on elastomeric chain force degradation. T
... Show MoreTo study and understand the mechanism of living systems, and how it works, it is quite important to investigate it at molecular level (like genomic, proteomic) as well as the methodologies, and how to apply and imply it on different branch of sciences and how can use it in developing medical diagnosis, treatments, drugs, and increased it in the future. Additionally it can also be applied in forensic techniques, food production and agriculture, as well as genetic profiling. This can be well understand by interfering and combinations of all branches of life sciences such as chemistry, physics, biotechnology, genetic evolution, and minimize the gap between them, this
... Show More