Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic worldwide. On a daily basis the number of deaths associated with COVID-19 is rapidly increasing. The main transmission route of SARS-CoV-2 is through the air (airborne transmission). This review details the airborne transmission of SARS-CoV-2, the aerodynamics, and different modes of transmission (e.g. droplets, droplet nuclei, and aerosol particles). SARS-CoV-2 can be transmitted by an infected person during activities such as expiration, coughing, sneezing, and talking. During such activities and some medical procedures, aerosols and droplets contaminated with SARS-CoV-2 particles are formed. Depending on their sizes and the environmental conditions, such particles stay viable in the air for varying time periods and can cause infection in a susceptible host. Very few studies have been conducted to establish the mechanism or the aerodynamics of virus-loaded particles and droplets in causing infection. In this review we discuss the various forms in which SARS-CoV-2 virus particles can be transmitted in air and cause infections.
This paper describes the digital chaotic signal with ship map design. The robust digital implementation eliminates the variation tolerance and electronics noise problems common in analog chaotic circuits. Generation of good non-repeatable and nonpredictable random sequences is of increasing importance in security applications. The use of 1-D chaotic signal to mask useful information and to mask it unrecognizable by the receiver is a field of research in full expansion. The piece-wise 1-D map such as ship map is used for this paper. The main advantages of chaos are the increased security of the transmission and ease of generation of a great number of distinct sequences. As consequence, the number of users in the systems can be increased. Rec
... Show MoreThe goal of our study is to perform detailed multiband surface photometry of the spiral galaxy NGC 4448 and its brightest star-forming regions. The structure and composition of the stellar population in the surface brightness galaxy NGC 4448 was studied using BVR CCD photometry. The observations were obtained on the 1.88 m optical telescope of Kottamia Astronomical Observatory (KAO), Egypt. A two-dimensional decomposition of the galaxy bulge and disk components is carried out. A powerful star forming region is observed near the galactic center. Based on the positions of the various components of the galaxy in two color diagrams. From the observations, the surface brightness profiles, Ellipticity profiles, position angle profiles and colo
... Show MoreIn the present work, a closed loop circulation system consist of three testing sections was designed and constructed. The testing sections made from (3m) of commercial carbon steel pipe of diameters(5.08, 2.54 and 1.91 cm) . Anionic surfactant (SDBS )with concentrations of (50, 100, 150, 200 and 250 ppm) was tested as a drag reducing agent. The additive(SDBS)studied using crude oil from south of Iraq. The flow rates of crude oil were used in 5.08 and 2.54 cm I.D. pipes are (1 - 12) m3/hr while (1-6) m3/hr were used in 1.91 cm J .D. pipe . Percentage drag reduction (%Dr) was found to increase by increasing solution velocity, pipe diameter and additives concentration (i.e. increasi
... Show MoreProduction logging is used to diagnose well production problems by evaluating the flow profile, entries of unwanted fluids and downhole flow regimes. Evaluating wells production performance can be easily induce from production logs through interpretation of production log data to provide velocity profile and contribution of each zone on total production. Production logging results supply information for reservoir modeling, provide data to optimize the productivity of existing wells and plan drilling and completion strategies for future wells. Production logging was carried out in a production oil well from Mishrif formation of West Qurna field, with the objective to determine the flow profile and fluid contributions from the perforations af
... Show MoreWe demonstrate the results of a mathematical model for investigation the nonlinear Stimulated Brillouin Scattering (SBS), which can be employed to achieve high optical amplifier. The SBS is created by interaction between the incident We demonstrate the results of a mathematical model for investigation the nonlinear Stimulated Brillouin Scattering (SBS), which can be employed to achieve high optical amplifier. The SBS is created by interaction between the incident light and the acoustic vibration fiber. The design criteria and the amplification characteristic of the Brillouin amplifier is demonstrated and discussed for fiber Brillouin amplifier using different pump power with different fiber length. The results show, high Brillouin gain can
... Show MoreThe various properties of the ground and excited electronic states of coumarins 102 using density functional theory (DFT) and time-dependent density functional theory (TDDFT) was calculated by the B3LYP density functional model with 6-31G(d,p) basis set by Gaussian 09 W program. Spectral characteristics of coumarin102 have been probed into by methods of experimental UV-visible, and quantum chemistry. The UV spectrum was measured in methanol. The optimized structures, total energies, electronic states (HOMO- LUMO), energy gap, ionization potentials, electron affinities, chemical potential, global hardness, softness, global electrophilictity, and dipole moment were measured. We find good agreement between experimental data of UV spectrum and
... Show More