Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining and learning algorithms. Data mining algorithms are modified to accept the aggregated data as input. Hierarchical data aggregation serves as a paradigm under which novel …
The research aimed at measuring the compatibility of Big date with the organizational Ambidexterity dimensions of the Asia cell Mobile telecommunications company in Iraq in order to determine the possibility of adoption of Big data Triple as a approach to achieve organizational Ambidexterity.
The study adopted the descriptive analytical approach to collect and analyze the data collected by the questionnaire tool developed on the Likert scale After a comprehensive review of the literature related to the two basic study dimensions, the data has been subjected to many statistical treatments in accordance with res
... Show MoreDiscriminant analysis is a technique used to distinguish and classification an individual to a group among a number of groups based on a linear combination of a set of relevant variables know discriminant function. In this research discriminant analysis used to analysis data from repeated measurements design. We will deal with the problem of discrimination and classification in the case of two groups by assuming the Compound Symmetry covariance structure under the assumption of normality for univariate repeated measures data.
... Show More
— In light of the pandemic that has swept the world, the use of e-learning in educational institutions has become an urgent necessity for continued knowledge communication with students. Educational institutions can benefit from the free tools that Google provide and from these applications, Google classroom which is characterized by ease of use, but the efficiency of using Google classroom is affected by several variables not studied in previous studies Clearly, this study aimed to identify the use of Google classroom as a system for managing e-learning and the factors affecting the performance of students and lecturer. The data of this study were collected from 219 members of the faculty and students at the College of Administra
... Show MoreIris research is focused on developing techniques for identifying and locating relevant biometric features, accurate segmentation and efficient computation while lending themselves to compression methods. Most iris segmentation methods are based on complex modelling of traits and characteristics which, in turn, reduce the effectiveness of the system being used as a real time system. This paper introduces a novel parameterized technique for iris segmentation. The method is based on a number of steps starting from converting grayscale eye image to a bit plane representation, selection of the most significant bit planes followed by a parameterization of the iris location resulting in an accurate segmentation of the iris from the origin
... Show MoreThe paradigm and domain of data security is the key point as per the current era in which the data is getting transmitted to multiple channels from multiple sources. The data leakage and security loopholes are enormous and there is need to enforce the higher levels of security, privacy and integrity. Such sections incorporate e-administration, long range interpersonal communication, internet business, transportation, coordinations, proficient correspondences and numerous others. The work on security and trustworthiness is very conspicuous in the systems based situations and the private based condition. This examination original copy is exhibiting the efficacious use of security based methodology towards the execution with blockchain
... Show MoreDifferent ANN architectures of MLP have been trained by BP and used to analyze Landsat TM images. Two different approaches have been applied for training: an ordinary approach (for one hidden layer M-H1-L & two hidden layers M-H1-H2-L) and one-against-all strategy (for one hidden layer (M-H1-1)xL, & two hidden layers (M-H1-H2-1)xL). Classification accuracy up to 90% has been achieved using one-against-all strategy with two hidden layers architecture. The performance of one-against-all approach is slightly better than the ordinary approach