Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining and learning algorithms. Data mining algorithms are modified to accept the aggregated data as input. Hierarchical data aggregation serves as a paradigm under which novel …
Electrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non‐invasive techniques can save time, costs, and efforts in archaeological prospection and yield detailed images of subsurface anomalies. We present the results of quasi‐three‐dimensional (3D) ERT measurements in an area of a presumed Roman construction, using a dense electrode network of parallel and orthogonal profiles in dipole–dipole configuration. A roll‐along technique has been utilized to cover a large part of the archaeological site with a 25 cm electrode and profile spacing, respectively. We have designed a new field proce
Malware represents one of the dangerous threats to computer security. Dynamic analysis has difficulties in detecting unknown malware. This paper developed an integrated multi – layer detection approach to provide more accuracy in detecting malware. User interface integrated with Virus Total was designed as a first layer which represented a warning system for malware infection, Malware data base within malware samples as a second layer, Cuckoo as a third layer, Bull guard as a fourth layer and IDA pro as a fifth layer. The results showed that the use of fifth layers was better than the use of a single detector without merging. For example, the efficiency of the proposed approach is 100% compared with 18% and 63% of Virus Total and Bel
... Show MoreBackground: study the effect of various risk factors on reperfusion success after thrombolysis by measuring ST resolution.
Objectives: Early patency of the infarct-related artery is associated with reduced mortality. Thrombolytic therapy is frequently followed by rapid recanalization lead to reduction of infarct size, improve left ventricular function and increase survival by reopening of coronary artery . The reduction in ST-segment elevation on the standard 12 lead electrocardiogram 1-4 h after initiation of thrombolysis may be the simplest and most useful clinical tool to test the effectiveness of thrombolytic therapy.
Methods: Seventy patients with acute ST elevation myocardial infarction admitted to alkindy teaching hospital C
Aggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and req
... Show MoreIn high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri
... Show MoreThe phenomenon of spatial variation in the economic, social and urban development levels is considered prevalent in most of the economic and social systems,this relates to the concentration of most of those activities in certain regions and because of their rarity in other regions , that led to the emergence of the problem of the sharp contrast between the most developed areas and least developed areas within the same region or within the regions of the same country,
Reduction of this variables , in addition to the development of areas through following up and relying on an effective regional development enabling to reduce unemployment as well as to stop the migration of the unplanned for population,
And the ideal use of available
Within this work, to promote the efficiency of organic-based solar cells, a series of novel A-π-D type small molecules were scrutinised. The acceptors which we designed had a moiety of N, N-dimethylaniline as the donor and catechol moiety as the acceptor linked through various conjugated π-linkers. We performed DFT (B3LYP) as well as TD-DFT (CAM-B3LYP) computations using 6-31G (d,p) for scrutinising the impact of various π-linkers upon optoelectronic characteristics, stability, and rate of charge transport. In comparison with the reference molecule, various π-linkers led to a smaller HOMO–LUMO energy gap. Compared to the reference molecule, there was a considerable red shift in the molecules under study (A1–A4). Therefore, based on
... Show More