Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining and learning algorithms. Data mining algorithms are modified to accept the aggregated data as input. Hierarchical data aggregation serves as a paradigm under which novel …
The purpose of this study is aimed to lay down an arranged platform suited to Iraqi constructional associations which in charge to carry out multi constructional projects, as it fulfilled management requirements and supervising, so that low - cost projects will be controlled in due term and quality. Based on primary info and observed data collected, the study thesis has been formulated in this way: Iraqi constructional sector bodies which are in charge to implement simultaneously multi constructional projects in need to reformulate its organized structure so that it will be more fitted to management and control of these projects. This thesis includes a
theoretical part contained presenting the most important resources locally and int
OpenStreetMap (OSM) represents the most common example of online volunteered mapping applications. Most of these platforms are open source spatial data collected by non-experts volunteers using different data collection methods. OSM project aims to provide a free digital map for all the world. The heterogeneity in data collection methods made OSM project databases accuracy is unreliable and must be dealt with caution for any engineering application. This study aims to assess the horizontal positional accuracy of three spatial data sources are OSM road network database, high-resolution Satellite Image (SI), and high-resolution Aerial Photo (AP) of Baghdad city with respect to an analogue formal road network dataset obtain
... Show MoreSupport vector machine (SVM) is a popular supervised learning algorithm based on margin maximization. It has a high training cost and does not scale well to a large number of data points. We propose a multiresolution algorithm MRH-SVM that trains SVM on a hierarchical data aggregation structure, which also serves as a common data input to other learning algorithms. The proposed algorithm learns SVM models using high-level data aggregates and only visits data aggregates at more detailed levels where support vectors reside. In addition to performance improvements, the algorithm has advantages such as the ability to handle data streams and datasets with imbalanced classes. Experimental results show significant performance improvements in compa
... Show MoreThis work bases on encouraging a generous and conceivable estimation for modified an algorithm for vehicle travel times on a highway from the eliminated traffic information using set aside camera image groupings. The strategy for the assessment of vehicle travel times relies upon the distinctive verification of traffic state. The particular vehicle velocities are gotten from acknowledged vehicle positions in two persistent images by working out the distance covered all through elapsed past time doing mollification between the removed traffic flow data and cultivating a plan to unequivocally predict vehicle travel times. Erbil road data base is used to recognize road locales around road segments which are projected into the commended camera
... Show MoreCrime is considered as an unlawful activity of all kinds and it is punished by law. Crimes have an impact on a society's quality of life and economic development. With a large rise in crime globally, there is a necessity to analyze crime data to bring down the rate of crime. This encourages the police and people to occupy the required measures and more effectively restricting the crimes. The purpose of this research is to develop predictive models that can aid in crime pattern analysis and thus support the Boston department's crime prevention efforts. The geographical location factor has been adopted in our model, and this is due to its being an influential factor in several situations, whether it is traveling to a specific area or livin
... Show MoreIn this research، a comparison has been made between the robust estimators of (M) for the Cubic Smoothing Splines technique، to avoid the problem of abnormality in data or contamination of error، and the traditional estimation method of Cubic Smoothing Splines technique by using two criteria of differentiation which are (MADE، WASE) for different sample sizes and disparity levels to estimate the chronologically different coefficients functions for the balanced longitudinal data which are characterized by observations obtained through (n) from the independent subjects، each one of them is measured repeatedly by group of specific time points (m)،since the frequent measurements within the subjects are almost connected an
... Show More