Objectives Dental implant is a revolution in dentistry; some shortages are still a focus of research. This study use long duration of radiofrequency (RF)–magnetron sputtering to coat titanium (Ti) implant with hydroxyapatite (HA) to obtain a uniform, strongly adhered in a few micrometers in thickness. Materials and Methods Two types of substrates, discs and root form cylinders were prepared using a grade 1 commercially pure (CP) Ti rod. A RF–magnetron sputtering device was used to coat specimens with HA. Magnetron sputtering was set at 150 W for 22 hours at 100°C under continuous argon gas flow and substrate rotation at 10 rpm. Coat properties were evaluated via field emission scanning electron microscopy (FESEM), scanning electron microscopy–energy dispersive X-ray (EDX) analysis, atomic force microscopy, and Vickers hardness (VH). Student’s t-test was used. Results All FESEM images showed a homogeneous, continuous, and crack-free HA coat with a rough surface. EDX analysis revealed inclusion of HA particles within the substrate surface in a calcium (Ca)/phosphorus (P) ratio (16.58/11.31) close to that of HA. Elemental and EDX analyses showed Ca, Ti, P, and oxygen within Ti. The FESEM views at a cross-section of the substrate showed an average of 7 µm coat thickness. Moreover, these images revealed a dense, compact, and uniform continuous adhesion between the coat layer and the substrate. Roughness result indicated highly significant difference between uncoated Ti and HA coat (p-value < 0.05). A significant improvement in the VH value was observed when coat hardness was compared with the Ti substrate hardness (p-value < 0.05). Conclusion Prolonged magnetron sputtering successfully coat Ti dental implants with HA in micrometers thickness which is well adhered essentially in excellent osseointegration.
Background:In this study,TiO2 layer was thermally grown as a diffusion barrier on CP Ti substrate prior to electrophoretic deposition of HA coatings, to improve the coating’s compatibility also macro and micro pores in nano Hydroxyapatite dual coatings were created and their effect on the bond strength between the bone and implant was evaluated. Materials and methods: Electrophoretic Deposition technique (EPD) was used to obtain coatings for each one of four types of Hydroxyapatite(HA)on CP Ti screws (micro HA, nano HA, dual nano HA with micro pores, dual nano HA with macro pores) where carbon particles used as fugitive material to be removed by thermal treatment to create porosity.For examination of the changes occurred on the subs
... Show MoreThin films ZrO2: MgO nanostructure have been synthesized by a radio frequency magnetron plasma sputtering technique at different ratios of MgO (0,6, 8 and 10)% percentage to be used as the gas sensor for nitrogen dioxide NO2. The samples were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and sensing properties were also investigated. The average particle size of all prepared samples was found lower than 33.22nm and the structure was a monoclinic phase. The distribution of grain size was found lower than36.3 nm and uninformed particles on the surface. Finally, the data of sensing properties have been discussed, where the
... Show MoreIn this research, Mn-doped TiO2 thin films were grown on glass, Si and OIT/glass substrates by R.F magnetron sputtering technique with thicknesses (250 nm) using TiO2:Mn target under Ar gas pressure and power of 100 Watt. Through the results of X-ray diffraction, the prepared thin films are of the polycrystallization type after the process of annealing at 600°C for two hour The average crystalline size were 145.32, 280.97 and 261.23 nm for (TiO2:Mn) thin film on glass, Si and OIT/glass substrates respectively, while the measured surface roughness is between 0.981nm and 1.14 nm. The fabricated (TiO2:Mn) thin film on glass sensors have high sensitivity for hydrogen( H2 reducing gas) compared to the sensitivity for hydrogen gas on Si and OIT/
... Show MoreBackground: Synthetic hydroxyapatite,(Ca10(PO4)6(OH2) can directly bond to bones without infection and fibrous encapsulation, thus is regarded as bioactive and biocompatible. The aim of the study was the estimation of microarchitecture bone parameters include bone mass (gm/cm2) cortical bone width (mm), thread width (mm), marrow space star volume analysis (V*m) and osteoblast, osteocyte cell number. Materials and methods: Ninety-six (96) commercially pure titanium CpTi) used in this study, (48) implants were coated with HA by dipping coating and (48) implants were used as control. They were inserted in (32) Newzland white rabbits and followed for 2 & 6 weeks. Mechanical torque removal test and histomorphometric analysis of bone microarchit
... Show MoreBackground: In recent years, the immediate loading of dental implants has become more accepted as a standard protocol for the treatment of the edentulous area. Success in implant dentistry depends on several parameters that may improve phenomenon of osseointegration and new bone formation in close contact with the implant. The aim of study was to evaluate the effect of strontium chloride coating of screw shape commercially pure titanium dental implant osseointegration at bone - implant interface by histomorphometric analysis and compare with hydroxyapatite coating at 2 time periods (2 weeks and 6 weeks). Materials and methods: Electrophoretic Deposition Technique (EPD) was used to obtain a uniform coating layer on commercially pure titanium
... Show MoreIn this research we investigated the corrosion behavior of the commertialy pure titanium and Ti-6Al-4V alloy that coated with hydroxyapatite by electrochemical deposition with applied voltage (6,9,12) Volt from aqueous solution containing Ca(NO3)2.H2O =7.0 gm/l , (NH4)2HPO4 =3.5 gm/l , Na(NO3)2 = 8.5 gm/l in order to improve the bonding strength of hydroxyapetite and medical metals and alloys and increasing the biocompatibility. The coating layer morphology was investigated by XRD, Optical microscope , and SEM tests, the corrosio tests was made by use senthesys simulated body fluid (SBF) , and we found that the propreate voltage for coatint on Ti was 9 Volt and for Ti-6Al-4Vwas12Volt.
Background: Titanium implant is widely used in dentistry because of its extraordinary biocompatibility and mechanical properties. To increase bone–implant connection and provide early loading after placement, implant is stored in different storage medium and treated with UV light. Both of them are applicable methods to increase the bioactivity of titanium and overcome the biological aging. This study was designed to assess the effect of vacuum storage method and air storage with and without UV light treated of Cp Ti implant mechanically and histologically. Materials and methods: Titanium screws were acid etched and prepared in four different modes using different storage methods (air or vacuum and, with or without UV treatment. The implan
... Show More