Article information: COVID-19 has roused the scientic community, prompting calls for immediate solutions to avoid the infection or at least reduce the virus's spread. Despite the availability of several licensed vaccinations to boost human immunity against the disease, various mutated strains of the virus continue to emerge, posing a danger to the vaccine's ecacy against new mutations. As a result, the importance of the early detection of COVID-19 infection becomes evident. Cough is a prevalent symptom in all COVID-19 mutations. Unfortunately, coughing can be a symptom of various of diseases, including pneumonia and inuenza. Thus, identifying the coughing behavior might help clinicians diagnose the COVID-19 infection earlier and distinguish coronavirus-induced from non-coronavirus-induced coughs. From this perspective, this research proposes a novel approach for diagnosing COVID-19 infection based on cough sound. The main contributions of this study are the encoding of cough behavior, the investigation of its unique characteristics, and the representation of these traits as association rules. These rules are generated and distinguished with the help of data mining and machine learning techniques. Experiments on the Virufy COVID-19 open cough dataset reveal that cough encoding can provide the desired accuracy (100%).
The Covid-19 virus disease has been shown to affect numerous organs and systems including the liver. The study aimed to compare lipid profiles and liver enzyme levels in individuals who had recovered from Covid-19 infection. To achieve the study objectives, liver Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), Alkaline phosphatase (ALP), Random Blood Sugar (RBS) and Lipid profile which include cholesterol, High-Density Lipoprotein (HDL), Triglycerides (T.G), Low-Density Lipoprotein (LDL), and Very low-density Lipoprotein (VLDL) were determined.
One hundred twenty serum samples were obtained, of which fifty samples were utilized as the control healthy persons (not affected by COVID) and seventy samples came f
... Show MorePolycystic ovary syndrome (PCOS) is the most endocrine problem in women of regenerative age. PCOS women typically belong to an age and sex group which is at higher risk for severe coronavirus disease (COVID-19). COVID-19 targets cells through angiotensin-converting enzyme 2 (ACE2) receptor presents on cells in veins, lungs, heart, digestion tracts, and kidneys. Renin-Angiotensin System (RAS) over activity has likewise been described in metabolic disorders; type 2 diabetes mellitus (T2DM), and conditions shared by women with polycystic ovary condition. The point of this study is to know the job of renin and ACE2 in PCOS and coronavirus and its relationship with hormones and other metabolic parameters related. The study groups consist of 1
... Show MoreMany studies dealt with the consequences of SARS CoV-2 (which cause COVID-19 infection) on the nervous system especially sensory nerves where the virus causes loss of taste and smell as it’s known, and may affect auditory nerves and be the expected cause of some hearing problems. A case-control analytic study was performed on a connivance sample of society of university students from a medical faculty. Each participant filled out a questionnaire contains demographic data and general, auditory and respiratory health condition, in addition to vaccination status. In the other side, the audio- examinations were performed on the study sample including Pure Tone Audiometry (PTA) and tympanometry. Two statistical methods; chi-square and t
... Show MoreVaccine hesitancy poses a significant risk to global recovery from COVID-19. To date however, there is little research exploring the psychological factors associated with vaccine acceptability and hesitancy in Iraq.
To explore attitudes towards COVID-19 vaccination in Iraq. To establish the predictors of vaccine uptake and vaccine hesitancy in an Iraqi population.
Using a cross-sectional design, 7,778 participants completed an online questionnaire exploring their vaccination status, likelihood of infection, perc
The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T
... Show MoreThe covid-19 pandemic sweeping the world and has rendered a large proportion of the workforce as they are unable to commute to work. This has resulted in employees and employers seeking alternative work arrangements, including the software industry. Then comes the need for the global market and international presence of many companies to implement the global virtual teams (GVTs). GVTs members are gradually engaged in globalized business environments across space, time and organizational boundaries via information and communication technologies. Despite the advancement of technology, the project managers are still facing many challenges in communication. Hense, to become a successful project manager still a big challenge for them. This study
... Show More