Preferred Language
Articles
/
YuYScpwBmraWrQ4dVEo7
XGBOOST AND COST-SENSITIVE CART FOR IMBALANCED MULTICLASS DIABETES CLASSIFICATION IN IRAQ
...Show More Authors

Diabetes imposes a substantial public health burden; according to the International Diabetes Federation, there were about 3.4 million diabetes related deaths worldwide in 2024, and in Iraq, the Federation reports that one in nine adults lives with diabetes in 2024, with 14,683 adult deaths attributable to diabetes and a total diabetes related health expenditure of 2,078 million United States dollars. The dataset analyzed in this study contains 1,000 records collected in 2020 from two Iraqi teaching hospitals and includes multiple clinical and laboratory measurements with three outcome classes, namely Non diabetic, Pre diabetic, and Diabetic, with a low prevalence of the Pre diabetic class and an imbalanced overall class distribution; the data are challenging because they contain many outliers, non homogeneous covariance matrices across classes, exact duplicate rows that were removed before modelling, and linear correlations among certain variables. The study objective was to train and evaluate models that discriminate among the three classes and yield accurate, well calibrated predictions for future cases in similar clinical settings, but the diagnostic properties of the data limited the applicability of classical discriminant functions; therefore two supervised learners were employed: Classification and Regression Trees (CART) and Extreme Gradient Boosting (XGBoost), together with preprocessing that removed exact duplicate rows and excluded VLDL because it is algebraically derived from triglycerides in mmol per liter as VLDL equals triglycerides divided by 2.2, which would introduce redundancy and multicollinearity. On the heldout test set, XGBoost achieved higher Accuracy at 98.18 percent compared with 97.58 percent for CART and higher Balanced Accuracy at 93.84 percent compared with 88.16 percent for CART, indicating that XGBoost provided the strongest overall operating point for this three-class task while CART remains useful when simple and transparent rules are required.

Preview PDF
Quick Preview PDF
Publication Date
Mon Jul 01 2019
Journal Name
International Journal Of Pharmaceutical Research
Sensitive Spectrophotometric Determination of Doxycycline in Pure and Dosage Forms using p-Bromanil
...Show More Authors

View Publication
Publication Date
Wed Jul 01 2015
Journal Name
Arabian Journal Of Geosciences
Mishrif carbonates facies and diagenesis glossary, South Iraq microfacies investigation technique: types, classification, and related diagenetic impacts
...Show More Authors

View Publication
Scopus (16)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Results In Engineering
Low-cost autonomous car level 2: Design and implementation for conventional vehicles
...Show More Authors

View Publication
Scopus (33)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
Comparative study of oxidative stress in diabetes mellitus
...Show More Authors

The aim of the study was comparative between oxidative stress in diabetes mellitus using the measurement of some biophysical and biochemical parameters on two groups of diabetic patients, were conducted in the Al-Yarmuk Teaching Hospital,30 patients insulin dependent diabetes mellitus (IDDM) or type 1 ,their ages ranged between (15-45) and30 patients non- insulin dependent diabetes mellitus (NIDDM) or type 2,their ages ranged between (42-65).This study has been compared with 30 healthy subjects. The present study was demonstrated to evaluate the alteration in oxidative stress as measured by plasma and red blood cells Malondialdehyde (MDA) andchanges in antioxidant mechanism as measured by plasma and red blood cells Glutathione (GSH)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jul 01 2017
Journal Name
Journal Of Construction Engineering And Management
Identification, Quantification, and Classification of Potential Safety Risk for Sustainable Construction in the United States
...Show More Authors

View Publication
Scopus (56)
Crossref (53)
Scopus Clarivate Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (11)
Crossref
Publication Date
Sat Sep 01 2018
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
The Factors Affecting on Managing Sensitive Data in Cloud Computing
...Show More Authors

Cloud computing represents the most important shift in computing and information technology (IT). However, security and privacy remain the main obstacles to its widespread adoption. In this research we will review the security and privacy challenges that affect critical data in cloud computing and identify solutions that are used to address these challenges. Some questions that need answers are: (a) User access management, (b) Protect privacy of sensitive data, (c) Identity anonymity to protect the Identity of user and data file. To answer these questions, a systematic literature review was conducted and structured interview with several security experts working on cloud computing security to investigate the main objectives of propo

... Show More
View Publication
Scopus (5)
Crossref (1)
Scopus Crossref
Publication Date
Mon Dec 01 2025
Journal Name
Journal Of Physics: Conference Series
Advanced Machine Learning Models for Banana Sweetness Classification
...Show More Authors

It takes a lot of time to classify the banana slices by sweetness level using traditional methods. By assessing the quality of fruits more focus is placed on its sweetness as well as the color since they affect the taste. The reason for sorting banana slices by their sweetness is to estimate the ripeness of bananas using the sweetness and color values of the slices. This classifying system assists in establishing the degree of ripeness of bananas needed for processing and consumption. The purpose of this article is to compare the efficiency of the SVM-linear, SVM-polynomial, and LDA classification of the sweetness of banana slices by their LRV level. The result of the experiment showed that the highest accuracy of 96.66% was achieved by the

... Show More
View Publication
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
A Sensitive Electrochemical Sensor for Rapid Determination of Mebeverine Hydrochloride and Metronidazole Benzoate Selective Molecular Imprinted Polymer in the PVC Membrane
...Show More Authors

Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Deep Learning of Diabetic Retinopathy Classification in Fundus Images
...Show More Authors

Diabetic retinopathy is an eye disease in diabetic patients due to damage to the small blood vessels in the retina due to high and low blood sugar levels. Accurate detection and classification of Diabetic Retinopathy is an important task in computer-aided diagnosis, especially when planning for diabetic retinopathy surgery. Therefore, this study aims to design an automated model based on deep learning, which helps ophthalmologists detect and classify diabetic retinopathy severity through fundus images. In this work, a deep convolutional neural network (CNN) with transfer learning and fine tunes has been proposed by using pre-trained networks known as Residual Network-50 (ResNet-50). The overall framework of the proposed

... Show More
View Publication Preview PDF
Crossref (4)
Crossref