Diabetes imposes a substantial public health burden; according to the International Diabetes Federation, there were about 3.4 million diabetes related deaths worldwide in 2024, and in Iraq, the Federation reports that one in nine adults lives with diabetes in 2024, with 14,683 adult deaths attributable to diabetes and a total diabetes related health expenditure of 2,078 million United States dollars. The dataset analyzed in this study contains 1,000 records collected in 2020 from two Iraqi teaching hospitals and includes multiple clinical and laboratory measurements with three outcome classes, namely Non diabetic, Pre diabetic, and Diabetic, with a low prevalence of the Pre diabetic class and an imbalanced overall class distribution; the data are challenging because they contain many outliers, non homogeneous covariance matrices across classes, exact duplicate rows that were removed before modelling, and linear correlations among certain variables. The study objective was to train and evaluate models that discriminate among the three classes and yield accurate, well calibrated predictions for future cases in similar clinical settings, but the diagnostic properties of the data limited the applicability of classical discriminant functions; therefore two supervised learners were employed: Classification and Regression Trees (CART) and Extreme Gradient Boosting (XGBoost), together with preprocessing that removed exact duplicate rows and excluded VLDL because it is algebraically derived from triglycerides in mmol per liter as VLDL equals triglycerides divided by 2.2, which would introduce redundancy and multicollinearity. On the heldout test set, XGBoost achieved higher Accuracy at 98.18 percent compared with 97.58 percent for CART and higher Balanced Accuracy at 93.84 percent compared with 88.16 percent for CART, indicating that XGBoost provided the strongest overall operating point for this three-class task while CART remains useful when simple and transparent rules are required.
Assessing the accuracy of classification algorithms is paramount as it provides insights into reliability and effectiveness in solving real-world problems. Accuracy examination is essential in any remote sensing-based classification practice, given that classification maps consistently include misclassified pixels and classification misconceptions. In this study, two imaginary satellites for Duhok province, Iraq, were captured at regular intervals, and the photos were analyzed using spatial analysis tools to provide supervised classifications. Some processes were conducted to enhance the categorization, like smoothing. The classification results indicate that Duhok province is divided into four classes: vegetation cover, buildings,
... Show MoreThe problem of research was to identify after the use of cost technology based on specifications in the validity of determining and measuring the costs of the implementation of contracting, by applying to al-Mansour General Construction Contracting Company as an appropriate alternative to the traditional costing system currently adopted, which is characterized by many shortcomings and weaknesses Which has been reflected in the validity and integrity of the calculations. To solve this problem, the research was based on the premise that: (The application of cost technology based on specifications will result in calculating the cost of the product according to the specification required by the customer, to meet his wishes properly and witho
... Show MoreResearch includes evaluation of projects implemented and which entered into trial operation period in accordance with the evaluation criteria and of (cost, quality and time) to determine the size deviations gap for the sample of projects during the years of assessment (2011-2012-2013-2014) of each of the three evaluation criteria, and then followed by a calculation the size of the overall gap to the problem based on the research problem to determine deviations from the specific implementation of each project by answering several questions to answer turns out the reasons for these deviations occur.
The importance of research Focus on the evaluation of received projects from contractors executing the projec
... Show MoreThe cost of microalgae harvesting constitutes a heavy burden on the commercialization of biofuel production. The present study addressed this problem through economic and parametric comparison of electrochemical harvesting using a sacrificial electrode (aluminum) and a nonsacrificial electrode (graphite). The harvesting efficiency, power consumption, and operation cost were collected as objective variables as a function of applied current and initial pH of the solution. The results indicated that high harvesting efficiency obtained by using aluminum anode is achieved in short electrolysis time. That harvesting efficiency can be enhanced by increasing the applied current or the electrolysis time for both electrode materials, where 98
... Show MoreBecause of the vulnerability of the concept of historical cost adopted as a basis for accounting measurement to many of the criticisms in reaction counter to the concept of fair value, the aim of the research is to try to make a comparison between the historical cost and fair value to prove the health and safety of any of the measurement best for the preparation of financial statements and through the state of each of the two study secretary and good financial investment after being diagnosed with a realistic problem is the limitations of the concept of historical cost in the evaluation of assets in spite of the supposed information disclosed in the financial statements compared to appropriate property for the concept of the fair value o
... Show MoreMedicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea
... Show MoreThe first successful implementation of Artificial Neural Networks (ANNs) was published a little over a decade ago. It is time to review the progress that has been made in this research area. This paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of ANNs. Different implementation techniques and design issues are discussed, such as obtaining a suitable activation function and numerical truncation technique trade-off, the improvement of the learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English Digit Numbers NN has four layers of 70 nodes (neurons) o
... Show MoreThe first successful implementation of Artificial Neural Networks (ANNs) was published a little over a decade ago. It is time to review the progress that has been made in this research area. This paper provides taxonomy for classifying Field Programmable Gate Arrays (FPGAs) implementation of ANNs. Different implementation techniques and design issues are discussed, such as obtaining a suitable activation function and numerical truncation technique trade-off, the improvement of the learning algorithm to reduce the cost of neuron and in result the total cost and the total speed of the complete ANN. Finally, the implementation of a complete very fast circuit for the pattern of English Digit Numbers NN has four layers of 70 nodes (neurons) o
... Show More