Diabetes imposes a substantial public health burden; according to the International Diabetes Federation, there were about 3.4 million diabetes related deaths worldwide in 2024, and in Iraq, the Federation reports that one in nine adults lives with diabetes in 2024, with 14,683 adult deaths attributable to diabetes and a total diabetes related health expenditure of 2,078 million United States dollars. The dataset analyzed in this study contains 1,000 records collected in 2020 from two Iraqi teaching hospitals and includes multiple clinical and laboratory measurements with three outcome classes, namely Non diabetic, Pre diabetic, and Diabetic, with a low prevalence of the Pre diabetic class and an imbalanced overall class distribution; the data are challenging because they contain many outliers, non homogeneous covariance matrices across classes, exact duplicate rows that were removed before modelling, and linear correlations among certain variables. The study objective was to train and evaluate models that discriminate among the three classes and yield accurate, well calibrated predictions for future cases in similar clinical settings, but the diagnostic properties of the data limited the applicability of classical discriminant functions; therefore two supervised learners were employed: Classification and Regression Trees (CART) and Extreme Gradient Boosting (XGBoost), together with preprocessing that removed exact duplicate rows and excluded VLDL because it is algebraically derived from triglycerides in mmol per liter as VLDL equals triglycerides divided by 2.2, which would introduce redundancy and multicollinearity. On the heldout test set, XGBoost achieved higher Accuracy at 98.18 percent compared with 97.58 percent for CART and higher Balanced Accuracy at 93.84 percent compared with 88.16 percent for CART, indicating that XGBoost provided the strongest overall operating point for this three-class task while CART remains useful when simple and transparent rules are required.
The main aim of this research is to introduce financing cost optimization and different financing alternatives. There are many studies about financing cost optimization. All previous studies considering the cost of financing have many shortcomings, some considered only one source of financing as a credit line without taking into account different financing alternatives. Having only one funding alternative powers, restricts contractors and leads to a very specific financing model. Although it is beneficial for the contractor to use a long-term loan to minimize interest charges and prevent a substantial withdrawal from his credit line, none of the existing financial-based planning models have considered long-term loans in
... Show MoreIn situ gel can be defined as a polymer solution administered as a liquid and when exposed to some physiologic condition such as thepH, ionic, temperature modulation or solvent and UV induced gelation undergo to phase transition to a semisolid gel. Ketotifenfumarate belongs to the histamine H1 receptor antagonists, and Ketotifen fumarate is used in the treatment of allergic conditions likeconjunctivitis and rhinitis. This work aims to study the natural polymer effects (xanthan gum,gellan gum) on the properties of pH-trigger in situ ocular gel, then compared the drug-releasing rate of optimized formula with the market ketotifen eye drop. Eightformulations (F1-F8) were prepared using different concentrations of xanthan gum, gellan gum with ca
... Show MoreThis abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivota
... Show Moreتعتبر شبكية العين جزءًا مهمًا من العين لأن الأطباء يستخدمون صورها لتشخيص العديد من أمراض العيون مثل الجلوكوما واعتلال الشبكية السكري وإعتام عدسة العين. في الواقع، يعد تصوير الشبكية المجزأ أداة قوية للكشف عن النمو غير العادي في منطقة العين بالإضافة إلى تحديد حجم وبنية القرص البصري. يمكن أن يؤدي الجلوكوما إلى إتلاف القرص البصري، مما يغير مظهر القرص البصري للعين. تعمل تقنيتنا على الكشف عن الجلوكوما وتصنيفه
... Show MoreCassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show More