The present study aimed to synthesize selenium nanoparticles (SeNPs) using aqueous extract of black currant as a reducing agent. The green synthesized black currant selenium nanoparticles (BCSeNPs) were identified by color change. The characterization of SeNPs was achieved by Ultraviolet-visible (UV–VIS) spectroscopy, scanning electron microscopy (SEM), X–ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). These tests were used to detect: stability, morphology, size, crystalline nature, and functional groups present on the surface of BCSeNPs. The results revealed appearance of the brick-red color indicating the specific color of selenium nanoparticles, and UV-Vis spectroscopy showed band absorbance at 265 nm of intense surface plasmon resonance manifesting the formation and stability of the prepared BCSeNPs. The SEM image showed the prevalence of spherical selenium nanosized, XRD at 2θ revealed crystallin selenium nanoparticles, the size was in the average of 18-50 nm. Furthermore, FTIR revealed the presence of functional groups of the plant which act as stabilizing and reducing agents. In conclusion, the aqueous black currant extract can act as a reducing and capping agent to synthesize BCSeNPs in nano-scale size by a simple method
Cilnidipine is a dihydropyridine class of calcium channel blockers, it is classified as a BCS class II drug, characterized by a low oral bioavailability of 13%. Consequently, the utilization of nanoparticle preparation is anticipated to enhance its bioavailability. The objective of the research is to integrate cilnidipine nanoparticles into oral films as a means of enhancing patient adherence. The optimal polymers for producing Cilnidipine films were PVA cold and or HPMC E5 at different concentrations using a casting technique with glycerol as a plasticizer. The Nano suspension-based preparation of Cilnidipine's oral film containing the combination of polymers exhibited a significant enhancement in vitro dissolution, with a percentage excee
... Show MoreA set newly complexes with the general formula [M(L)Cl2] are resulting from the reaction of a new schiff base ligand [Ethyl (6R,7R)-7-((E)-2-((2-ethoxy-2- oxoethoxy)imino)-2-(2-(((E)-4-nitrobenzylidene) amino) thiazol -4- yl) acetamido) -8- oxo -3- vinyl -5- thia -1-aza bicyclo [4. 2.0] oct -2- ene -2- carboxylate] (L). This ligand was derived from the reaction of the two substances 4-nitrobenzaldehyde and precursor (P). Reaction the ligand with metal ions M= Mn(II), Co(II), Ni(II), Cu(II) and Cd(II) afforded new complexes which are characterized by FT-IR and Electronic Spectra. These measurements indicate that the complexes have a tetrahedral geometry. The Penicillin-Binding Protein 3 (PBP3) of Staphylococcus aureus and the target protein
... Show MoreThis article includes designed and synthesized for bent-shaped liquid crystal molecules starting from 5,5-diethylpyrimidine-2,4,6(1H,3H,5H)-trione and two moles of chloroacetylchloride in N, N-dimethyl formamide (DMF) and triethylamine (TEA) to product compound [I] ,then reacted the later compound with two moles of 4-hydroxybenzonitrile to yield nitrile compound [II]. Likewise, reaction 5,5-diethylpyrimidine-2,4,6(1H,3H,5H)-trione and two moles of ethylchloroacetate with fused sodium acetate in ethanol to create an ester compound [III], and then the later compound was reacted with two moles of hydrazine hydrate in ethanol to obtained hydrazide acid compound [IV]. After that, the compound [IV] reacted with two moles of ethyl acetoacetate in
... Show MoreA multistep synthesis was established for the preparation of a new vanillic acid-1, 2, 4-1triazole-3-thiol conjugate (
In this work lactone (1) was prepared from the reaction of p-nitro phenyl hydrazine with ethylacetoacetate, which upon treatment with benzoyl chloride afforded the lactame (2). The reaction of (2) with 2-amino phenol produced a new Schiff base (L) in good yield. Complexes of V(IV), Zr(IV), Rh(III), Pd(II), Cd(II) and Hg(II) with the new Schiff base (L) have been prepared. The compounds (1, 2) were characterized by FT-IR and UV spectroscopy, as well as characterizing ligand (L) by the same techniques with elemental analysis (C.H.N) and (1H-NMR). The prepared complexes were identified and their structural geometries were suggested by using elemental analysis (C.H.N), flame atomic absorption technique, FT-IR and UV-Vis spectroscopy, in additio
... Show MoreThe search involve the synthesis of some new 1,3-oxazepine and 1,3-diazepine derivatives were synthesized from Schiff base. The Schiff base (VIII) prepared from reaction of aldehyde (IV) derived from L-ascorbic acid with aromatic amine ([2-(4- nitrophenyl)-5-(4-aminophenyl)-1,3,4-oxadiazole] (VII). Oxazepine compounds (IX-XI) were synthesized from the cyclic condensation of Schiff base (VIII) with (maleic, phthalic and 3-nitrophthalic) anhydride, compounds (IX-XI) that were reacted with p-methoxyaniline to give diazepine derivatives (XII-XIV). The structures of the new synthesized compounds have been confirmed by physical properties and spectroscopy measurements such as FTIR, and some of them by 1 H-NMR, 13 CNMR, Mass, and evaluated
... Show MoreThe ligand 4-amino-N-(5-methylisoxazole-3-yl)-benzene-sulfonamide(L1) (as a chelating ligand) was treated with Pd(II),Pt (IV) and Au(III) ions in alcoholic medium in order to prepare a series of new metal complexes. Mixed ligand complexes of this primary ligand were prepared in alcoholic medium in presence of the co-ligand 4,4'-dimethyl-2,2'-bipyridyl(L2) with Cu(II) ,Pd(II) and Au(III) ions. The complexes were characterized in solid state using flame atomic absorption, elemental analysis C.H.N.S, FT-IR, UV-Vis Spectroscopy, conductivity and magnetic susceptibility measurements. The nature of some complexes formed in ethanolic solution has been studied following the molar ratio method, also stability constant was studied and the complexes f
... Show MoreIn this work, Schiff base ligands L1: N, N-bis (2-hydroxy-1-naphthaldehyde) hydrazine, L2: N, N-bis (salicylidene) hydrazine, and L3:N –salicylidene- hydrazine were synthesized by condensation reaction. The prepared ligands were reacted with specific divalent metal ions such as (Mn2+, Fe2+, Ni2+) to prepare their complexes. The ligands and complexes were characterized by C.H.N, FT-IR, UV-Vis, solubility, melting point and magnetic susceptibility measurements. The results show that the ligands of complexes (Mn2+, Fe2+) have octahedral geometry while the ligands of complexes (Ni2+) have tetrahedral geometry.