: Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA /cm2), in15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in e
... Show MoreThe m-consecutive-k-out-of-n: F linear and circular system consists of n sequentially connected components; the components are ordered on a line or a circle; it fails if there are at least m non-overlapping runs of consecutive-k failed components. This paper proposes the reliability and failure probability functions for both linearly and circularly m-consecutive-k-out-of-n: F systems. More precisely, the failure states of the system components are separated into two collections (the working and the failure collections); where each one is defined as a collection of finite mutual disjoint classes of the system states. Illustrative example is provided.
This study was aimed to investigat integrated system for in vitro growth of paulownia plants by assessing the efficacy of chlorine dioxide (ClO2) as an alternative to autoclave in sterilizing culture medium. Therefore, this study was devised to compare autoclave sterilization at three different times (5, 10, and 15) minutes and three different concentrations of ClO2 (0, 0.4, 0,8, 1) mg/L. The results showed that, compared with (0.4) mg/L concentration, concentrations of (0.8 and 1) mg/L are more effective at sterilizing the culture medium. ClO2 sterilization improved individual single node growth more than autoclave sterilization. Since ClO2 is non-toxic, it could be used as a safe alternative to autoclave when propagating paulown
... Show Moren-Hexane conversion enhancement was studied by adding TCE (Trichloro-ethylene) on feed stream using 0.3%Pt/HY zeolite catalyst. All experiments were achieved at atmospheric pressure and on a continuous laboratory unit with a fixed bed reactor at a temperature range 240-270◦C, LHSV 1-3h-1, H2/nC6 mole ratio 1-4.
By adding 435 ppm of TCE, 49.5 mole% conversion was achieved at LHSV 1h-1, temperature of 270ºC and H2/nC6 mole ratio of 4, while the conversion was 18.3 mol% on the same catalyst without adding TCE at the same conditions. The activation energy decreased from 98.18 for pure Pt/HY zeolite to 82.83 kJ/mole by adding TCE. Beside enhancement the activity, selectivity and product distribution enhanced by providing DMB (Dimethyl b
Low conversion copolymerization of N-vinyl-2-pyrrolidon M.W = (111.14) VP (monomer-1) has been conducted with acrylic acid AA and methymethacrylate MMA in ethanol at 70ºC , using Benzoyl peroxide BPO as initiator . The copolymer composition has been determined by elemental analysis. The monomer reactivity ratios have been calculated by the Kelen-Tudos and Finman-Ross graphical procedures . The derived reactivity ratios (r1 , r2 ) are : (0.51 , 4.85) for (VP / AA ) systems and (0.34 , 7.58) for (VP , MMA) systems , and found the reactivity ratios of the monomer AA , MMA is mor than the monomer VP in the copolymerization of (VP / AA) and (VP /MMA) systems respectly . The reactivity ratios values were used for microstructures calculation.
The radial wave functions of the generalise dWoods–Saxon (GWS) potential within the two-body model of (Core + n) have been used to study the ground-state density distributions of protons, neutrons and matter and the associated root mean square (rms) radii of neutron-rich 14B, 22N, 23O and 24F halo nuclei. The calculated results show that the radial wave functions of the generalised Woods–Saxon potential within the two-body model succeed in reproducing neutron halo in these exotic nuclei. Elastic electron scattering form factors for these nuclei are studied by combining the charge density distributions with the plane-wave Born approximation (PWBA).