The removal of COD from wastewater generated by petroleum refinery has been investigated by adopting electrocoagulation (EC) combined with adsorption using activated carbon (AC) derived from avocado seeds. The process variables influencing COD removal were studied: current density (2–10 mA/cm2), pH (4–9), and AC dosage (0.2–1 g/L). Response surface methodology (RSM) based on Box–Behnken design (BBD) was used to construct a mathematical model of the EC/AC process. Results showed that current density has the major effect on the COD removal with a percent of contribution 32.78% followed by pH while AC dosage has not a remarkable effect due to the good characteristics of AC derived from avocado seeds. Increasing current density gives better results while neutral conditions are suitable for EC/AC. The optimized conditions for higher removal of COD adopting the combined process were a current density of 10 mA/cm2, AC dosage of 0.2 g/L, and pH of 6.8 in which a removal efficiency of 81.6% was attained. The combining of EC with adsorption showed that adding a suitable amount of AC derived from avocado seeds resulted in enhancement of COD removal from 63.45% to 81.4%. Based on this high removal efficiency, the EC/AC could be adopted instead of traditional EC.
This research is Interested in how the performance and implementation of factory production engine coolants of the General Company for Electrical Industries of its work, and to facilitate the flow of the decisions of senior management and access to all configurations, to ensure differentiation desired and reduce lost sales, resulting from poor scheduling of operations through the application of certain rules of scheduling operations in the production plant Engines Air-cooler, the objectives of research in identifying the best base and working to reduce the time and cost of Same Rules of Process which are considered the most influential of any organization and thr
... Show MoreIn this work, a functional nanocomposite consisting of multi walled carbon nanotubes combined with nanoparticles of silver and Pomegranate peel extract (MWCNTs- SNPs -NPGPE) was successfully synthesized using ultra sonic technique. The nanocomposite has been characterized using Transmission electron microscope (TEM), XRD, Energy dispersive X-ray spectroscopy (EDS) UV-Vis and FTIR. The obtained results reveal that the MWCNTs-SNPs-NPGPE nanocomposite exhibits form of nanotubes with rough surfaces and containing black spots, which are the silver nanoparticles. The dimensions of this tube are 161 nm in length and 60 nm in width with nanoparticles of silver not exceeding 20 nm. The XRD pattern of the prepared MWCNTs-SNPs-NPGPE nanocomposite s
... Show MoreGas hydrate formation is considered one of the major problems facing the oil and gas industry as it poses a significant threat to the production, transportation and processing of natural gas. These solid structures can nucleate and agglomerate gradually so that a large cluster of hydrate is formed, which can clog flow lines, chokes, valves, and other production facilities. Thus, an accurate predictive model is necessary for designing natural gas production systems at safe operating conditions and mitigating the issues induced by the formation of hydrates. In this context, a thermodynamic model for gas hydrate equilibrium conditions and cage occupancies of N2 + CH4 and N2 + CO4 gas mix
The disposal of textile effluents to the surface water bodies represents the critical issue especially these effluents can have negative impacts on such bodies due to the presence of dyes in their composition. Biological remediation methods like constructed wetlands are more cost-effective and environmental friendly technique in comparison with traditional methods. The ability of vertical subsurface flow constructed wetlands units for treating of simulated wastewater polluted with Congo red dye has been studied in this work. The units were packed with waterworks sludge bed that either be unplanted or planted with Phragmites australis and Typha domingensis. The efficacy of present units was evaluated by monitoring of DO, Temperature, COD
... Show MoreBackground: One of the most common problems that encountered is postburn contracture which has both functional and aesthetic impact on the patients. Various surgical methods had being proposed to treat such problem. Aim: To evaluate the effectiveness of square flap in management of postburn contracture in several part of the body. Patients and methods: From April 2019 to June 2020 a total number of 20 patients who had postburn contracture in various parts of their body were subjected to scar contracture release using square flap. The follow up period was ranging between 6 months to 12 months. Results: All of our patients had achieved complete release of their band with maximum postoperative motion together with accepted aesthetic outcome. A
... Show MoreABSTRACT
The research aims to know the reality of a two examined variables at the organization studied identifying the relationship between managerial processes reengineering and organizational citizenship behavior. The research applied on the Electronic Manufacturing Company encompassing a sample of managers and employees consisted of (100) individuals. A questionnaire is the main instrument for data gathering, which has been included (45) questions as well as personal interviews to support the questionnaire's questions and to achieve greater realism for collecting information.
Answers were analyzed to reach the final results through the use of a number of statistical methods via
... Show MoreSnS has been widely used in photoelectric devices due to its special band gap of 1.2-1.5 eV. Here, we reported on the fabrication of SnS nanosheets and the effect of synthesis condition together with heat treatment on its physical properties. The obtained band gap of the SnS nanosheets is in the rage of 1.37-1.41 eV. It was found that the photo-current density of a thin film comprised of SnS nanosheets could be enhanced significantly by annealing treatment. The maximum photo-current density of the stack structure of FTO/SnS/CdS/Pt was high as 389.5 mu A cm(-2), rendering its potential application in high efficiency solar hydrogen production.
This work presents a computer studying to simulate the charging process of a dust grain immersed in plasma with negative ions. The study based on the discrete charging model. The model was developed to take into account the effect of negative ions on charging process of dust grain.
The model was translated to a numerical calculation by using computer programs. The program of model has been written with FORTRAN programming language to calculate the charging process for a dust particle in plasma with negative ion, the time distribution of a dust charge, number charge equilibrium and charging time for different value of ηe (ratio of number density of electron to number density of positive ion).