In the present study, silver nanoparticles (AgNPs) were prepared using an eco-friendly method synthesized in a single step biosynthetic using leaves aqueous extract of Piper nigrum, Ziziphus spina-christi, and Eucalyptus globulus act as a reducing and capping agents, as a function of volume ratio of aqueous extract(100ppm) to AgNO3 (0.001M), (1: 10, 2: 10, 3: 10). The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AgNPs showed surface Plasmon resonance centered at 443, 440, and 441 nm for sample prepared using extract Piper nigrum, Ziziphus spina-christi, and Eucalyptus respectively. The XRD pattern showed that the strong intense peaks
Objective: The objective of the present study was to design and optimize oral fast dissolving film (OFDF) of practically insoluble drug lafutidine in order to enhance bioavailability and patient compliance especially for a geriatric and unconscious patient who are suffering from difficulty in swallowing.Methods: The films were prepared by a solvent casting method using low-grade hydroxyl propyl methyl cellulose (HPMC E5), polyvinyl alcohol (PVA), and sodium carboxymethyl cellulose (SCMC) as film forming polymers. Polyethylene glycol 400 (PEG400), propylene glycol (PG) and glycerin were used as a plasticizer to enhance the film forming properties of the polymer. Tween 80 (1% solution) and poloxamer407 were used as a surfactant, citri
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show More