Artemisia is a perennial wild shrub with large branches and compound leaves. Artemisia contains about 400 types, and its medical importance is due to the presence of many active substances and compounds such as volatile oils, alkaloids and flavonoids, glycosides, saponins, tannins, and coumarins. This study was designed to study the effect of the aqueous extract of the fruit of the Artemisia plant on the organs of the body, as well as to know its ability to activate the hepatic enzyme alanine transaminase (ALT/GPT). The fruit of this shrub was extracted using the measurement technique gas chromatography-mass spectrometry (GC/MASS) and organic solvent hexane and ethyl acetate in one to one ratio. It contained 21 compounds, a high percentage of their terpenes, essential aromatic oils, alkaloids, and phenolic compounds. The results showed a significant improvement in the enzyme (ALT/GPT) level after adding different concentrations of hot aqueous extract to the fruit of the Artemisia plant. The fruit of the Artemisia plant can be used to treat many diseases and improve the activity of liver enzymes.
A novel demountable shear connector for precast steel-concrete composite bridges is presented. The connector uses high-strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents bolts from slipping within their holes. Moreover, the connector promotes accelerated construction and overcomes the typical construction tolerance issues of precast structures. Most importantly, the connector allows bridge disassembly. Therefore, it can address different bridge deterioration scenarios with minimum disturbance to traffic flow including the following: (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (
... Show MoreIn current article an easy and selective method is proposed for spectrophotometric estimation of metoclopramide (MCP) in pharmaceutical preparations using cloud point extraction (CPE) procedure. The method involved reaction between MCP with 1-Naphthol in alkali conditions using Triton X-114 to form a stable dark purple dye. The Beer’s law limit in the range 0.34-9 μg mL-1 of MCP with r =0.9959 (n=3) after optimization. The relative standard deviation (RSD) and percentage recoveries were 0.89 %, and (96.99–104.11%) respectively. As well, using surfactant cloud point extraction as a method to extract MCP was reinforced the extinction coefficient(ε) to 1.7333×105L/mol.cm in surfactant-rich phase. The small volume of organi
... Show MoreRoller Compacted Concrete is a type of concrete that is environmentally friendly and more economical than traditional concrete. Roller Compacted Concrete is typically used for heavy-duty and specialist constructions, such as hydraulic structures and pavements, because of its coarse surface. The main difference between RCC and conventional concrete mixtures is that RCC has a more significant proportion of fine aggregates that allow compaction and tight packing. In recent years, it has been estimated that several million tons of waste demolished material (WDM) produced each year are directed to landfills worldwide without being recycled for disposal. This review aimed to study the literature about creating a Roller-Comp
... Show MoreThis study evaluates the flexural behavior of ultra-thin (50 mm) one‑way reinforced‑concrete (RC) slabs retrofitted with near‑surface mounted (NSM) carbon‑fiber‑reinforced polymer (CFRP) rods under quasi‑static loading. T300‑grade CFRP rods (≈4 mm diameter) were bonded in pre‑cut 7 mm × 7 mm grooves using a two‑part epoxy. As a proof-of-concept experimental baseline, three simply‑supported specimens (1000 mm × 500 mm × 50 mm) were tested in a six‑point bending configuration (four applied loads + two reactions): two conventional controls and one strengthened slab. A load‑control rate of ~15 kN/min was applied; the controls were cycled twice and the strengthened slab four times. Relative to the average of
... Show MoreThe fall angle of sun rays on the surface of a photovoltaic PV panel and its temperature is negatively affecting the panel electrical energy produced and efficiency. The fall angle problem was commonly solved by using a dual-axis solar tracker that continually maintains the panel orthogonally positioning to the sun rays all day long. This leads to maximum absorption for solar radiation necessary to produce maximum amount of energy and maintain high level of electrical efficiency. To solve the PV panel temperature problem, a Water-Flow Double Glazing WFDG technique has been introduced as a new cooling tool to reduce the panel temperature. In this paper, an integration design of the water glazing system with a dual-axis tracker has been ac
... Show More