Artemisia is a perennial wild shrub with large branches and compound leaves. Artemisia contains about 400 types, and its medical importance is due to the presence of many active substances and compounds such as volatile oils, alkaloids and flavonoids, glycosides, saponins, tannins, and coumarins. This study was designed to study the effect of the aqueous extract of the fruit of the Artemisia plant on the organs of the body, as well as to know its ability to activate the hepatic enzyme alanine transaminase (ALT/GPT). The fruit of this shrub was extracted using the measurement technique gas chromatography-mass spectrometry (GC/MASS) and organic solvent hexane and ethyl acetate in one to one ratio. It contained 21 compounds, a high percentage of their terpenes, essential aromatic oils, alkaloids, and phenolic compounds. The results showed a significant improvement in the enzyme (ALT/GPT) level after adding different concentrations of hot aqueous extract to the fruit of the Artemisia plant. The fruit of the Artemisia plant can be used to treat many diseases and improve the activity of liver enzymes.
The permeable reactive barrier (PRB) is one of the promising innovative in situ groundwater remediation technologies, in removing of copper from a contaminated shallow aquifer. The 1:1- mixture of waste foundry sand (WFS) and Kerbala’s sand (KS) was used for PRB. The WFS was represented the reactivity material while KS used to increase the permeability of PRB only. However, Fourier-transform infrared (FTIR) analysis proved that the carboxylic and alkyl halides groups are responsible for the sorption of copper onto WFS. Batch tests have been performed to characterize the equilibrium sorption properties of the (WFS+KS) mix in copper- containing aqueous
solutions. The sorption data for Cu+2 ions, obtained by batch experiments, have be
The paper discusses the structural and optical properties of In2O3 and In2O3-SnO2 gas sensor thin films were deposited on glass and silicon substrates and grown by irradiation of assistant microwave on seeded layer nucleated using spin coating technique. The X-ray diffraction revealed a polycrystalline nature of the cubic structure. Atomic Force Microscopy (AFM) used for morphology analysis that shown the grain size of the prepared thin film is less than 100 nm, surface roughness and root mean square for In2O3 where increased after loading SnO2, this addition is a challenge in gas sensing application. Sensitivity of In2O3 thin film against NO2 toxic gas is 35% at 300oC. Sensing properties were improved after adding Tin Oxide (SnO2) to be mo
... Show MoreObjective: To evaluate the client's satisfaction about the services provided in primary health care centers in the
city of Baghdad and its impact on the improvement of services.
Methodology: A simple random sample consisting of (200) clients to primary health care centers in the city of
Baghdad, (15-20) clients for each center using a questionnaire to evaluate the client's satisfaction for the service
and the use of the direct method of interview, which lasts for (6-10) minutes.
Results: Results of the study show that the number of men visits to primary health care centers, fewer women
This indicates that the most important responsibilities of family members and private health care is the
responsibility of women than
In this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between
... Show MorePolyacrylonitrile nanofiber (PANFS), a well-known polymers, has been extensively employed in the manufacturing of carbon nanofibers (CNFS), which have recently gained substantial attention due to their excellent features, such as spinnability, environmental friendliness, and commercial feasibility. Because of their high carbon yield and versatility in tailoring the final CNFS structure, In addition to the simple formation of ladder structures through nitrile polymerization to yield stable products, CNFS and PAN have been the focus of extensive research as potential production precursors. For instance, the development of biomedical and high-performance composites has now become achievable. PAN homopolymer or PAN-based precursor copolymer can
... Show MoreBackground: The use of osseointegrated fixtures in dentistry has been demonstrated both histologically and clinically to be beneficial in providing long term oral rehabilitation in completely edentulous individual. Most patients suffer from denture instability; particularly with mandibular prosthesis, the use of dental implant will be benefit significantly from even a slight increase in retention. The concept of implanting two to four fixtures in a bony ridge to retain a complete denture prosthesis appealing therefore, as retention, stability and acceptable economic compromise to the expanse incurred with the multiple fixture supported fixed prosthesis. Materials and methods in this study the sample were eight patients selected from a hosp
... Show MoreBendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o
... Show MoreLiposome-mediated transfection of cancer cells provide a valuable experimental technique to study cellular gene expression and may also be adapted for gene therapy studies. However, the widely recognized advantage of liposome-mediated transfection is high efficiency. Therefore, this study were performed to optimize transfection techniques in human larynx carcinoma cell line Hep-2 using the commercial synthetic lipid TransFast™ Reagent and monitoring the expression efficiency by using the pSV-?-galactosidase Control Vector which encoded ?-galactosidase, maximum transfection efficiency were achieved with TransFast™ Reagent used at the Charge ratios of 2:1 and 0.5 µg DNA/ml, this is indicate that TransFast™ Reagent can be used as an eff
... Show More