Blogs have emerged as a powerful technology tool for English as a Foreign Language (EFL) classrooms. This literature review aims to provide an overview of the use of blogs as learning tools in EFL classrooms. The study examines the benefits and challenges of using blogs for language learning and the different types of blogs that can be used for language learning. It provides suggestions for teachers interested in using blogs as learning tools in their EFL classrooms. The findings suggest that blogs are a valuable and effective tool for language learning, particularly in promoting collaboration, communication, and motivation.
Computational Thinking (CT) is very useful in the process of solving everyday problems for undergraduates. In terms of content, computational thinking involves solving problems, studying data patterns, deconstructing problems using algorithms and procedures, doing simulations, computer modeling, and reasoning about abstract things. However, there is a lack of studies dealing with it and its skills that can be developed and utilized in the field of information and technology used in learning and teaching. The descriptive research method was used, and a test research tool was prepared to measure the level of (CT) consisting of (24) items of the type of multiple-choice to measure the level of "CT". The research study group consists of
... Show MoreRecommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreIn this study, we attempt to provide healthcare service to the pilgrims. This study describes how a multimedia courseware can be used in making the pilgrims aware of the common diseases that are present in Saudi Arabia during the pilgrimage. The multimedia courseware will also be used in providing some information about the symptoms of these diseases, and how each of them can be treated. The multimedia courseware contains a virtual representation of a hospital, some videos of actual cases of patients, and authentic learning activities intended to enhance health competencies during the pilgrimage. An examination of the courseware was conducted so as to study the manner in which the elements of the courseware are applied in real-time learn
... Show More.
Abstract
This research’s goal is to restore and to revive the jurisprudence of Mother of Believers (Um alMuaamineen) “Um Salmah” "may God bless her", and to highlight her outstanding assimilation and understanding of religion and her conscious thought. The current research is a comparative scientific theoretical study represented in the comparison of jurisprudence of “Um Salamah” with Hadiths of fasting and pilgrimage rules as well as the duration mentioned in jurisprudence of for doctrines( 4 schools of thought )to identify these hadiths with the inclusion and discussion of their evidence.
The current research included two topics: the first one is to identify and introduce
... Show More<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c
... Show MoreSemantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s
... Show MoreThe article deals with the role of metaphors in forming the plot of L. Ulitskaya’s family chronicle “Medea and Her Children”. The author of the article describes the results of the next stage of research related to the works of Lyudmila Evgenievna Ulitskaya, a representative of modern Russian prose. The analysis of tropes and figures in the works written at the turn of the XXth – XXIth centuries is of importance for the study of the modern state of Russian language as an independent system. “Medea and Her Children” is one of the works by L. Ulitskaya (written in 1996), which, like her other works, is characterized by a unique style of narration, rich in vocabulary, lexical, semantic and stylistic diversity of the author’s word
... Show MoreData-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.
The paper deals with a study of peculiarities of gluttonic text structures in the Arabic-Russian language pair at the sociolinguistic, system structural, functional-stylistic and lexico-semantic aspects from the standpoint of view at functional approach to the phenomena of language systems and the gluttonic discourse as a special type of ver bal and social discourse. Profound attention is paid to the consideration of lexical and grammatical means of explication of glutton discourse on the examples of identi cal Arabic and Russian literary texts as well as language situations in Arab countries and Russia, features of which are due to the characteristics of gluttonic discourses that reflect the features of the two different ethnolingual cu
... Show More