Preferred Language
Articles
/
YWE4RZkBdMdGkNqj-iX9
Hypothesis Testing for Non-Normal Multiple Compact Regression Model
...Show More Authors

Generalized multivariate transmuted Bessel distribution belongs to the family of probability distributions with a symmetric heavy tail. It is considered a mixed continuous probability distribution. It is the result of mixing the multivariate Gaussian mixture distribution with the generalized inverse normal distribution. On this basis, the paper will study a multiple compact regression model when the random error follows a generalized multivariate transmuted Bessel distribution. Assuming that the shape parameters are known, the parameters of the multiple compact regression model will be estimated using the maximum likelihood method and Bayesian approach depending on non-informative prior information. In addition, the Bayes factor was used as a criterion to test the hypotheses. A Gaussian distribution rule selects the bandwidth parameter and the kernel function based on the Gauss kernel function and quartic kernel function. It estimates the model parameters are under quadratic loss function. The researchers concluded that the posterior probability distribution of is a multivariate t distribution. Applying the findings to real data related to the jaundice percentage in the blood component as a response variable, red blood cell volume and red blood cell sedimentation as parametric influencing variables, and white and red cells as nonparametric influencing variables, the researchers concluded that when the shape parameters increase, the values ​​of the mean square error criteria of And the variance parameter decreases.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jan 14 2024
Journal Name
Journal Of Al-rafidain University College For Sciences ( Print Issn: 1681-6870 ,online Issn: 2790-2293 )
Using Nonparametric Procedure to Develop an OCMT Estimator for Big Data Linear Regression Model with Application Chemical Pollution in the Tigris River
...Show More Authors

Chemical pollution is a very important issue that people suffer from and it often affects the nature of health of society and the future of the health of future generations. Consequently, it must be considered in order to discover suitable models and find descriptions to predict the performance of it in the forthcoming years. Chemical pollution data in Iraq take a great scope and manifold sources and kinds, which brands it as Big Data that need to be studied using novel statistical methods. The research object on using Proposed Nonparametric Procedure NP Method to develop an (OCMT) test procedure to estimate parameters of linear regression model with large size of data (Big Data) which comprises many indicators associated with chemi

... Show More
View Publication
Crossref
Publication Date
Tue Sep 15 2020
Journal Name
Al-academy
Aesthetic Presence Hypothesis of the Role Character in the Actor's Theatrical Performance: يــاسين إسماعيل خلـف
...Show More Authors

The current study monitors the mechanisms of formation of the actor's performance expressive system (voice and motion) and the levels of their construction consistent with the aesthetic premise of the theatrical performance through incorporating what is natural, materialistic (physiological) and artistic and philosophical virtual (aesthetic ), through which the creative actor seeks not to repeat the image and substance of a thing according to its natural life image, in favor of new aesthetic reproduction governed by a group of significant relationships formed according to (artistic and philosophical) characteristics and features that distinguish the artistic accomplishment from its reality(its natural and functional reference). According

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine
Comparison study of classification methods of intramuscular electromyography data for non-human primate model of traumatic spinal cord injury
...Show More Authors

Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between the Methods of Ridge Regression and Liu Type to Estimate the Parameters of the Negative Binomial Regression Model Under Multicollinearity Problem by Using Simulation
...Show More Authors

The problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others

... Show More
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Computer Systems And Software Engineering
T-Way Testing Strategies
...Show More Authors

In line with the advancement of hardware technology and increasing consumer demands for new functionalities and innovations, software applications grew tremendously in term of size over the last decade. This sudden increase in size has a profound impact as far as testing is concerned. Here, more and more unwanted interactions among software systems components, hardware, and operating system are to be expected, rendering increased possibility of faults. To address this issue, many useful interaction-based testing techniques (termed t-way strategies) have been developed in the literature. As an effort to promote awareness and encourage its usage, this chapter surveys the current state-of-the-art and reviews the state-of-practices in t

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Advances In Systems Analysis, Software Engineering, And High Performance Computing
T-Way Testing Strategies
...Show More Authors

In line with the advancement of hardware technology and increasing consumer demands for new functionalities and innovations, software applications grew tremendously in term of size over the last decade. This sudden increase in size has a profound impact as far as testing is concerned. Here, more and more unwanted interactions among software systems components, hardware, and operating system are to be expected, rendering increased possibility of faults. To address this issue, many useful interaction-based testing techniques (termed t-way strategies) have been developed in the literature. As an effort to promote awareness and encourage its usage, this chapter surveys the current state-of-the-art and reviews the state-of-practices in t

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Mar 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Nadaraya-Watson Estimator a Smoothing Technique for Estimating Regression Function
...Show More Authors

    The using of the parametric models and the subsequent estimation methods require the presence of many of the primary conditions to be met by those models to represent the population under study adequately, these prompting researchers to search for more flexible models of parametric models and these models were nonparametric models.

    In this manuscript were compared to the so-called Nadaraya-Watson estimator in two cases (use of fixed bandwidth and variable) through simulation with different models and samples sizes.  Through simulation experiments and the results showed that for the first and second models preferred NW with fixed bandwidth fo

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Revolution In Science And Humanity
Nonparametric Estimation of Failure Periods for Log Normal Distribution Using Bootstra
...Show More Authors

A non-parametric kernel method with Bootstrap technology was used to estimate the confidence intervals of the system failure function of the log-normal distribution trace data. These are the times of failure of the machines of the spinning department of the weaving company in Wasit Governorate. Estimating the failure function in a parametric way represented by the method of the maximum likelihood estimator (MLE). The comparison between the parametric and non-parametric methods was done by using the average of Squares Error (MES) criterion. It has been noted the efficiency of the nonparametric methods based on Bootstrap compared to the parametric method. It was also noted that the curve estimation is more realistic and appropriate for the re

... Show More
View Publication