Gas sensors are essential for detecting noxious gases that have a detrimental effect on people's health and welfare. Carbon quantum dots (CQDs) are the fundamental component of gas detectors. CQDs and graphene (Gr) were prepared using the electrochemical method. The gas sensitivity of these materials was evaluated at different temperatures (150, 200, 250 °C) to assess their effectiveness. Subsequently, experiments were conducted at different temperatures to ascertain that the combination of CQDs and Gr, with various percentages of Gr and CQDs, exhibited superior gas sensitization properties compared to CQDs alone. This was evaluated based on criteria such as sensitivity, recovery time, and reaction time. Interestingly, the combination was highly responsive. The quantum dots on glass substrates could detect NO2 gas at the abovementioned temperatures. Experimental evidence showed that the gas sensor can only detect graphene at low temperatures.
Dielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show MoreUnderwater Wireless Sensor Networks (UWSNs) have emerged as a promising technology for a wide range of ocean monitoring applications. The UWSNs suffer from unique challenges of the underwater environment, such as dynamic and sparse network topology, which can easily lead to a partitioned network. This results in hotspot formation and the absence of the routing path from the source to the destination. Therefore, to optimize the network lifetime and limit the possibility of hotspot formation along the data transmission path, the need to plan a traffic-aware protocol is raised. In this research, we propose a traffic-aware routing protocol called PG-RES, which is predicated on the ideas of Pressure Gradient and RESistance concept. The proposed
... Show MoreReliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data co
An ingrowing toenail is a common problem affecting mainly adolescents and young adults, with a male predominance of 3:1. The disorder generally occurs in big toes. It is painful and often chronic and it affects work and social activities. Most patients initially complain of pain and later discharge, infection and difficulty in walking occur. The Objectives: The purpose of the study was to evaluate the efficacy and safety of (10600nm) CO2 laser in the treatment of ingrowing toe nail. Patients, Materials & Methods: This study was done in laser medicine research clinics from July 2013 to the end of December 2013; 10 patients including 7(70%) males and 3 (30%) females with age ranging from 18 years to 70 years with mean age of 44 years o
... Show MoreCarbon dioxide (CO2) capture and storage is a critical issue for mitigating climate change. Porous aromatic Schiff base complexes have emerged as a promising class of materials for CO2 capture due to their high surface area, porosity, and stability. In this study, we investigate the potential of Schiff base complexes as an effective media for CO2 storage. We review the synthesis and characterization of porous aromatic Schiff bases materials complexes and examine their CO2 sorption properties. We find that Schiff base complexes exhibit high CO2 adsorption capacity and selectivity, making them a promising candidate for use in carbon capture applications. Moreover, we investigate the effect of various parameters such as temperature, and pressu
... Show MoreThe value of time out as a time not count of official time form the game like four periods and extra time also it considered a great interest if used well thru the game , the importance of this problem is not using well the time out and when the coach ask for time out and how to invest this time legally to make good results also there is no observing system as the researcher see gives the reality image that the coach is successful lead the game when he takes time out . The goals of research that knowing on numbers of time out for excellent teams in Iraq (first &second) stages and putting special inventory reverse reality of asking time out (positive &negative) on playing basketball , the hypothesis of research that tell the time out effect
... Show MoreA new nano-sized NiMo/TiO2-γ-Al2O3 was prepared as a Hydrodesulphurization catalyst for Iraqi gas oil with sulfur content of 8980 ppm, supplied from Al-Dura Refinery. Sol-gel method was used to prepare TiO2- γ-Al2O3 nano catalyst support with 64% TiO2, 32% Al2O3, Ni-Mo/TiO-γ-Al2O3 catalyst was prepared under vacuum impregnation conditions to loading metals with percentage 3.8 wt.% and 14 wt.% for nickel and molybdenum respectively while the percentage for alumina, and titanium became 21.7, and 58.61 respectively. The synthesized TiO2- γ-Al2O3 nanocomposites and Ni-Mo /TiO2
... Show MoreThis study was conducted to evaluate the hydrocarbon biodegradation abilities of Enterobacter cloacae, Staphylococcus aureus, Sphingomonas paucimobilis, and Pentoae species which were isolated from different diesel-contaminated soil samples. The isolates were identified by the Vitek 2 system. Fourier-transform spectroscopy (FT-IR) tested the potential of these isolates to biodegrade the diesel according to the peak areas, a significant decrease in the area of the peaks at 2856-2928 cm−1 corresponds to aliphatic hydrocarbons. The appearance of small peaks at 900-1032 cm−1 refers to substituted benzene derivative compounds. An appearance of some new peaks at 3010- 3030 cm−1 which indicate the presence of alcohol (-OH) and ketones (RC=O)
... Show More