In this paper, a least squares group finite element method for solving coupled Burgers' problem in 2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved. The theoretical results show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the effic
... Show MoreImage compression is a suitable technique to reduce the storage space of an image, increase the area of storage in the device, and speed up the transmission process. In this paper, a new idea for image compression is proposed to improve the performance of the Absolute Moment Block Truncation Coding (AMBTC) method depending on Weber's law condition to distinguish uniform blocks (i.e., low and constant details blocks) from non-uniform blocks in original images. Then, all elements in the bitmap of each uniform block are represented by zero. After that, the lossless method, which is Run Length method, is used for compressing the bits more, which represent the bitmap of these uniform blocks. Via this simple idea, the result is improving
... Show MoreIn this work, the fractional damped Burger's equation (FDBE) formula = 0,
This paper deals with the thirteenth order differential equations linear and nonlinear in boundary value problems by using the Modified Adomian Decomposition Method (MADM), the analytical results of the equations have been obtained in terms of convergent series with easily computable components. Two numerical examples results show that this method is a promising and powerful tool for solving this problems.
In this research velocity of moving airplane from its recorded digital sound is introduced. The data of sound file is sliced into several frames using overlapping partitions. Then the array of each frame is transformed from time domain to frequency domain using Fourier Transform (FT). To determine the characteristic frequency of the sound, a moving window mechanics is used, the size of that window is made linearly proportional with the value of the tracked frequency. This proportionality is due to the existing linear relationship between the frequency and its Doppler shift. An algorithm was introduced to select the characteristic frequencies, this algorithm allocates the frequencies which satisfy the Doppler relation, beside that the tra
... Show MoreThis paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.