This study is concerned with the derivation of differential equation of motion for the free coupled vertical – torsional and lateral vibration of opened thin-walled curved beams. The curved beam to be considered in this study is of isotropic opened thin – walled (I) section with equal top and bottom flanges. The derivation depends on Hamilton's principle which required finding the potential and kinetic energy of the curved beam section due to internal stresses and all types of movements (Vertical,Torsional and Lateral) .The effect of restrained warping displacement is also considered in this study. Three differential equations are derived for vertical, torsional and lateral movement .and approximate solutions are developed by using the method of multiple scale via a perturbation technique. The resulting natural frequencies and modes for vertical , torsional and lateral movements are compared with those calculated by using finite element approach ( STAAD Pro. 2007 ) and with the results other studies.
The present study devoted to determine the ultimate lateral carrying capacity of piles foundation in contaminated clayey soils and subjected to lateral cyclical loading. Two methods have been used to calculate the lateral carrying capacity of piles foundation; the first one is two-line slopes intersection method (TLSI) and the second method is a modified model of soil degradation. The model proposed by Heerama and then developed by Smith has been modified to take into consideration the effects of heavy loads and soil contamination. The ultimate lateral carrying capacity of single pile and piles group (2×2) driven into samples of contaminated clayey soils have been calculated by using the two methods. Clayey soil samples are contami
... Show MoreThe use of composite materials has vastly increased in recent years. Great interest is therefore developed in the damage detection of composites using non- destructive test methods. Several approaches have been applied to obtain information about the existence and location of the faults. This paper used the vibration response of a composite plate to detect and localize delamination defect based on the modal analysis. Experiments are conducted to validate the developed model. A two-dimensional finite element model for multi-layered composites with internal delamination is established. FEM program are built for plates under different boundary conditions. Natural frequencies and modal displacements of the intact and damaged
... Show MoreThis paper is concerned with the blow-up solutions of a system of two reaction-diffusion equations coupled in both equations and boundary conditions. In order to understand how the reaction terms and the boundary terms affect the blow-up properties, the lower and upper blow-up rate estimates are derived. Moreover, the blow-up set under some restricted assumptions is studied.
A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa
In this research the natural frequency of a cracked simple supported beam (the crack is in many places and in different depths) is investigated analytically, experimentally and numerically by ANSYS program, and the results are compared. The beam is made of iron with dimensions of L*W*H= (0.84*0.02* 0.02m), and density = 7680kg/m3, E=200Gpa. A comparison made between analytical results from ANSYS with experimental results, where the biggest error percentage is about (7.2 %) in crack position (42 cm) and (6 mm) depth. Between Rayleigh method with experimental results the biggest error percentage is about (6.4 %) for the same crack position and depth. From the error percentages it could be concluded that the Rayleigh method gives
... Show MoreBased on Lyapunov exponent criterion, the aircraft lateral-directional stability during critical flight cases is presented. A periodic motion or limit cycle oscillation isdisplayed. A candidate mechanism for the wing rock limit cycle is the inertia coupling between an unstable lateral-directional (Dutch roll) mode with stable longitudinal (short period) mode. The coupling mechanism is provided by the nonlinear interaction of motion related terms in the complete set equations of motion. To analyze the state variables of the system, the complete set of nonlinear equations of motion at different high angles of attack are solved. A novel analysis including the variation of roll angle as a function of angle of attack is proposed. Furthermore
... Show More
... Show MoreThis paper deals with the nonlinear large-angle bending dynamic analysis of curved beams which investigated by modeling wave’s transmission along curved members. The approach depends on the wave propagation in one-dimensional structural element using the method of characteristics. The method of characteristics (MOC) is found to be a suitable method for idealizing the wave propagation inside structural systems. Timoshenko’s beam theory, which includes transverse shear deformation and rotary inertia effects, is adopted in the analysis. Only geometrical non-linearity is considered in this study and the material is assumed to be linearly elastic. Different boundary conditions and loading cases are examined.
From the results obtai
... Show More