This study is concerned with the derivation of differential equation of motion for the free coupled vertical – torsional and lateral vibration of opened thin-walled curved beams. The curved beam to be considered in this study is of isotropic opened thin – walled (I) section with equal top and bottom flanges. The derivation depends on Hamilton's principle which required finding the potential and kinetic energy of the curved beam section due to internal stresses and all types of movements (Vertical,Torsional and Lateral) .The effect of restrained warping displacement is also considered in this study. Three differential equations are derived for vertical, torsional and lateral movement .and approximate solutions are developed by using the method of multiple scale via a perturbation technique. The resulting natural frequencies and modes for vertical , torsional and lateral movements are compared with those calculated by using finite element approach ( STAAD Pro. 2007 ) and with the results other studies.
InSb alloy was prepared then InSb:Bi films have been prepared successfully by thermal evaporation technique on glass substrate at Ts=423K. The variation of activation energies(Ea1,Ea2)of d.c conductivity with annealing temperature (303, 373, 423, 473, 523 and 573)K were measured, it is found that its values increases with increasing annealing temperature. To show the type of the films, the Hall and thermoelectric power were measured. The activation energy of the thermoelectric power is much smaller than for d.c conductivity and increases with increasing annealing temperature .The mobility and carrier concentration has been measured also.
NiO0.99Cu0.01 films have been deposited using thermal evaporation
technique on glass substrates under vacuum 10-5mbar. The thickness
of the films was 220nm. The as -deposited films were annealed to
different annealing temperatures (373, 423, and 473) K under
vacuum 10-3mbar for 1 h. The structural properties of the films were
examined using X-ray diffraction (XRD). The results show that no
clear diffraction peaks in the range 2θ= (20-50)o for the as deposited
films. On the other hand, by annealing the films to 423K in vacuum
for 1 h, a weak reflection peak attributable to cubic NiO was
detected. On heating the films at 473K for 1 h, this peak was
observed to be stronger. The most intense peak is at 2θ = 37
The optical energy gap(Eopt) and the width of the tails of localized states in the band gap (?E) for Se:2%Sb thin films prepared by thermal co-evaporation method as a function of annealing temperature are studied in the photon energy range ( 1 to 5.4)eV.Se2%Sb film was found to be indirect transition with energy gap of (1.973,2.077, 2.096, 2.17) eV at annealing temperature (295,370,445,520)K respectively. The Eopt and ?E of Se:2%Sb films as a function of annealing temperature showed an increase in Eopt and a decrease in ?E with increasing the annealing temperature. This behavior may be related to structural defects and dangling bonds.
In this research, the study effect of irradiation on structural and optical properties of thin film (CdO) by spray pyrolysis method, which deposited on glasses substrates at a thickness of (350±20)nm , The flow rate of solution was 5 ml/min and the substrate temperature was held constant at 400˚C.The investigation of (XRD) indicates that the (CdO) films are polycrystalline and type of cubic. The results of the measuring of each sample from grain size, micro strain, dislocation density and number of crystals the grain size decreasing after irradiation with gamma ray from(27.41, 26.29 ,23.63)nm . The absorbance and transmittance spectra have been recorded in the wavelength range (300-1100) nm in order to study the optical properties. the op
... Show MoreA thin CdS Films have been evaporated by thermal evaporation technique with different thicknesses (500, 1000, 1500 and 2000Å) and different duration times of annealing (60, 120 180 minutes) under 573 K annealing temperature, the vacuum was about 8 × 10-5 mbar and substrate temperature was 423 K. The structural properties of the films have been studied by X- ray diffraction technique (XRD). The crystal growth became stronger and more oriented as the film thickness (T) and duration time of annealing ( Ta) increases.