The Manganese doped zinc sulfide nanoparticles of the cubic zinc blende structure with the average crystallite size of about 3.56 nm were synthesized using a coprecipitation method using Thioglycolic Acid as an external capping agent for surface modification. The ZnS:Mn2+ nanoparticles of diameter 3.56 nm were manufactured through using inexpensive precursors in an efficient and eco-friendly way. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy are used to examine the structure, morphology and chemical composition of the nanoparticles. The antimicrobial activity of (ZnS:Mn2+) nanocrystals was investigated by measuring the diameter of inhibition zone using well diffusion mechanism versus two various bacterial strains. The technique of microorganism inactivation was considered as sorts-dependent. Bacillus subtilis showed the largest antibacterial sensitivity (35 mm) to ZnS: Mn2+ nanoparticles at a concentration (50 mM) whereas Escherichia coli offered maximum zone of inhibition (20 mm) at the same concentration. In this study, the results indicated that ZnS:Mn2+ nanoparticles were found to have significant antibacterial activity against Gram-negative (E. coli) and Gram-positive (Bacillus subtilis) bacteria.
In search of novel antibacterial agent, a series of new isatin derivatives (3a-d) have been synthesized by condensation isatin (2,3-indolinendione) with piperidine (hexahydropyridine), hydrazine hydrate and Boc-amino acids respectively. Compounds synthesized have been characterized by IR spectroscopy and elemental analysis. In addition, the in vitro antibacterial properties have been tested against E. coli, P. aeruginosa, and Bacillus cereus, S. aureus by employing the well diffusion technique. A majority of the synthesized compounds were showing good antibacterial activity and from comparisons of the compounds, compound 3d has been determined to be the most active compound.
The reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as magnetic susceptibility measurements. From the above data, the proposed molecular structu
... Show MoreThe reaction of 2-amino benzoic acid with 1,2-dichloroethane under reflux in methanol and KOH as a base to gave the precursor [H4L]. The precursor under reflux and drops of CH3COOH which reacted with (2mole) from salicycaldehyde in methanol to gave a new type N2O4 ligand [H2L], this ligand was reacted with (MCl2) Where [M= Co (II), Ni(II), Cu(II) and Zn(II)] in (1:1) ratio at reflux in methanol using KOH as a base, to give complexes of the general formula [M(L)]. All compounds have been characterized by spectroscopic methods [1H NMR ( just to the ligand), FTIR, uv-vis, atomic absorption], melting point, conductivity, chloride content, as well as m
... Show MoreAn aqueous chemical reaction has been used to prepare antifungal ZnS: Mn nanostructures, from manganese chloride, zinc acetate and thioacetamide in aqueous solution. The nanoparticle size has been controlled using thioglycolic acid as a capping factor. The major feature of the ZnS:Mn nanoparticles of average diameter ~ 2.73 nm is that possible preparing the sample from sources non-toxic precursors. The manufactured ZnS:Mn nanoparticles were identified and characterized to investigate the structure, morphology, composition of components of the nanoparticles and optical properties using (XRD, SEM, EDS and UV-Vis spectroscopy) techniques respectively. The agar dilution mechanism used to evaluate of the antifungal activity using ZnS:Mn nanopart
... Show MoreThe purpose of this study is to determine the useful of Schiff bases derivatives containing (oxazepine, tetrazole) rings with biological activity which can be used as drug and antimicrobial, the present work is started from [Binary (2,5(4,'4-diaminophenyl) – 1,3,4 – oxadiazole]. A variety of Schiff bases and heterocyclic (oxazepine, tetrazole) have been synthesis, and confirm that structures by physical properties , FTIR , 1H-NMR, 13C-NMR, elemental analysis, [Microbial study against three type of bacteria (staphylococcus aurea and klebsiella pneumonia) and (Canadida albncans) fungi].All analyzation performed in center of consulatation University of Jordan.
Environmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route via Anchusa strigosa L. Flowers extract. These nanoparticles were further characterized by FTIR, XRD and SEM techniques. Removing of Gongo red from water was applied successfully by using synthesized CuO NPs which used as an adsorbent material. It was validated that the CuO NPs eliminate Congo red by means of adsorption, and the best efficiency of adsorption was gained at pH (3). The maximum adsorption capacity of CuO NPs for Congo red was observed at (35) mg/g. The equilibrium information for adsorption have been outfitted to the Langmuir, Freundlich, Temkin and Halsey adsorption isot
... Show MoreThe Mesopotamian marshlands faced a massive destruction from many years and this lead to effect to ecosystem. In this study a survey was made on the physical chemical and heavy metals characteristics and microbiological analysis of AL Chibaish marsh during the two months. Water analyses revealed unacceptable values for almost all physiochemical and biological properties, according to WHO standard limits for drinking water. Almost all major ions and heavy metal concentrations in water showed a distinct decreasing trend at the marsh outlet station compared to other stations. In general, major and minor ions, as well as heavy metals exhibit higher concentrations in location 1 than in location 3. The concentrations of heavy metals in water show
... Show More