This research utilized natural asphalt (NA) deposits from sulfur springs in western Iraq. Laboratory tests were conducted to evaluate the performance of an asphalt mixture incorporating NA and verify its suitability for local pavement applications. To achieve this, a combination of two types of NA, namely soft SNA and hard HNA, was blended to create a binder known as Type HSNA. The resulting HSNA exhibited a penetration grade that adhered to Iraqi specifications. Various percentages of NA (20%, 40%, 60%, and 80%) were added to petroleum asphalt. The findings revealed enhanced physical properties of HSNA, which also satisfied the requirements outlined in the Iraqi specifications for asphalt cement. Consequently, HSNA can serve as an asphalt binder to produce asphalt mixtures for flexible paving construction. Notably, HSNA mixtures exhibited greater Marshall stability and stiffness index when compared to traditional mixtures. The results from indirect tensile strength (ITS) and tensile strength ratio (TSR) tests indicated that the 80NA mixture displayed the highest ITS values and a TSR of 81.36%, surpassing the TSR of the mixture incorporating petroleum asphalt by 0.57%.
Failure in asphalt mixture and distress in pavement are major issues to roads infrastructure. Selecting an appropriate chemical composition of asphalt cement is a key component in avoiding these issues. This work aimed to investigate the effect of the chemical composition of different polar fractions on the rheological and physical properties of asphalt cement. Four types of asphalt cement with penetration grades of 20/30, 40/50, 60/70 and 85/100 were divided into four fractions. Complex shear modules, rutting resistance and rotational viscosity of the asphalt cement were determined by using a Dynamic Shear Rheometer and a Rotation Viscometer, respectively. The results show that an increase in the asphaltene content and Gastel index resulte
... Show MoreThis paper reports on the experimental study, which conducted a series of triaxial tests for the asphalt concrete using hydrated lime as a mineral additive. Three HMA mixes, prepared by the specification for wearing, levelling and base layers, were studied under three different temperatures. The test results have demonstrated that, compared with the control mixes excluding HL, the permanent deformation resistance of the HL modified mixes has significant improvement. The deformation has been reduced at the same load repetition number, meanwhile the flow number has been considerably increased. The degree of improvement in permanent deformation resistance using HL is more pronounced at high stress deviation states and high temperature.
... Show MoreThe durability of asphalt concrete is highly dependent on the geometry and mineralogy of coarse aggregates, yet their combined influence on mechanical and moisture resistance properties is still not fully understood. This study evaluates the effects of coarse aggregate geometry, specifically flat and elongated particle ratios and angularity, as well as mineral composition (quartz versus calcite), on asphalt mixture durability. The durability of mixtures was evaluated through Marshall properties as well as moisture susceptibility indicators, including the tensile strength ratio (TSR) and index of retained strength (IRS). Statistical analyses (ANOVA and t-tests) were also conducted to confirm the significance of the observed effects.
... Show MoreEnhancing fatigue resistance in asphalt binders and mixtures is crucial for prolonging pavement lifespan and improving road performance. Recent advancements in nanotechnology have introduced various nanomaterials such as alumina (NA), carbon nanotubes (CNTs), and silica (NS) as potential asphalt modifiers. These materials possess unique properties that address challenges related to asphalt fatigue. However, their effectiveness depends on proper dispersion and mixing techniques. This review examines the mixing methods used for each nanomaterial to ensure uniform distribution within the asphalt matrix and maximize performance benefits. Recent research findings are synthesized to elucidate how these nanomaterials and their mixing proce
... Show MoreSolar energy is one of the immeasurable renewable energy in power generation for a green, clean and healthier environment. The silicon-layer solar panels absorb sun energy and converts it into electricity by off-grid inverter. Electricity is transferred either from this inverter or from transformer, consumed by consumption unit(s) available for residential or economic purposes. The artificial neural network is the foundation of artificial intelligence and solves many complex problems which are difficult by statistical methods or by humans. In view of this, the purpose of this work is to assess the performance of the Solar - Transformer - Consumption (STC) system. The system may be in complete breakdown situation due to failure of both so
... Show MorePermanent deformation in asphalt concrete pavements is pervasive distress [1], influenced by various factors such as environmental conditions, traffic loading, and mixture properties. A meticulous investigation into these factors has been conducted, yielding a robust dataset from uniaxial repeated load tests on 108 asphalt concrete samples. Each sample underwent systematic evaluation under varied test temperatures, loading conditions, and mixture properties, ensuring the data’s comprehensiveness and reliability. The materials used, sourced locally, were selected to enhance the study ʼs relevance to pavement constructions in hot climate areas, considering different asphalt cement grades and con- tents to understand material variability ef
... Show MoreGypseous soil, which covers vast area in west, middle, east and south west regions of Iraq exhibit acceptable strength properties when dry, but it is weak and collapsible when it comes in touch with moisture from rain or other sources. When such weak soil is adopted for earth reinforced embankment construction, it may exhibit hazardous situation. Gypseous soil was investigated for the optimum liquid asphalt requirements of both cutback and emulsion using the one-dimensional unconfined compression strength test. The optimum fluid content was 13% (7% of cutback with 6% water content), and 17% (9% of emulsion with 8% water content). A laboratory model box of 50x50x25 cm was used as a representative of embankment; soil or asphalt stabilize
... Show MoreThis research aims to investigate the effect of four types of nanomaterial on the Marshall properties and durability of warm mix asphalt (WMA). These types are; nano silica(NS), nano carbonate calcium (NCC), nano clay(NC), and nanoplatelets (NP). For each type of Nanomaterial, three contents are tried as following; NS(1%, 3%, and 5%), NCC(2%, 4%, and 6%), NC(3%, 5%, and 7%), and NP (2%, 4%, and 6%) by weight of asphalt cement. Following Marhsall mix design method, the optimum asphalt cement content is determined, thereafter the optimum dosage for each nanomaterial is obtained based on the highest Marshall stability value. The durability of the control mix (no nanomaterial) and modified mixtures have been compared based on moisture damage, r
... Show MoreStone Matrix Asphalt (SMA) is a gap-graded asphalt concrete hot blend combining high-quality coarse aggregate with a rich asphalt cement content. This blend generates a stable paving combination with a powerful stone-on-stone skeleton that offers excellent durability and routing strength. The objectives of this work are: Studying the durability performance of stone matrix asphalt (SMA) mixture in terms of moisture damage and temperature susceptibility and Discovering the effect of stabilized additive (Fly Ash ) on the performance of stone matrix asphalt (SMA) mixture. In this investigation, the durability of stone matrix asphalt concrete was assessed in terms of temperature susceptibility, resistance to moisture damage, and sensitivity t
... Show More