Preferred Language
Articles
/
XhfW0IwBVTCNdQwC_Qhr
Comparison study of classification methods of intramuscular electromyography data for non-human primate model of traumatic spinal cord injury
...Show More Authors

Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Batch and flow injection spectrophotometric methods for determination of Ceftazidime in pharmaceutical formulations
...Show More Authors

It is generally accepted that there are two spectrophotometric techniques for quantifying ceftazidime (CFT) in bulk medications and pharmaceutical formulations.  The methods  are described as simple, sensitive, selective, accurate and efficient techniques. The first method used an alkaline medium to convert ceftazidime to its diazonium salt, which is then combined with the 1-Naphthol (1-NPT) and 2-Naphthol (2-NPT) reagents. The azo dye that was produced brown  and red in color with absorption intensities of ƛmax 585 and 545nm respectively. Beer's law was followed in terms of concentration ranging from  (3-40) µg .ml-1 For (CFT-1-NPT) and (CFT-2-NPT), the detection limits were 1.0096 and 0.8017 µg.ml-1, respec

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Wed Mar 01 2023
Journal Name
Journal Of Engineering
Comparative Evaluation of Roundabout Capacities Methods for Single-lane and Multi-lane Roundabout
...Show More Authors

A roundabout is a highway engineering concept meant to calm traffic, increase safety, reduce stop-and-go travel, reduce accidents and congestion, and decrease traffic delays. It is circular and facilitates one-way traffic flow around a central point. The first part of this study evaluated the principles and methods used to compare the capacity methods of roundabouts with different traffic conditions and geometric configurations. These methods include gap acceptance, empirical, and simulation software methods. Previous studies mentioned in this research used various methods and other new models developed by several researchers. However, this paper's main aim is to compare different roundabout capacity models for acceptabl

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Aug 07 2025
Journal Name
Journal Of Image And Graphics
Analysis Evolution of Image Caption Techniques: Combining Conventional and Modern Methods for Improvement
...Show More Authors

This study explores the challenges in Artificial Intelligence (AI) systems in generating image captions, a task that requires effective integration of computer vision and natural language processing techniques. A comparative analysis between traditional approaches such as retrieval- based methods and linguistic templates) and modern approaches based on deep learning such as encoder-decoder models, attention mechanisms, and transformers). Theoretical results show that modern models perform better for the accuracy and the ability to generate more complex descriptions, while traditional methods outperform speed and simplicity. The paper proposes a hybrid framework that combines the advantages of both approaches, where conventional methods prod

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Jul 22 2023
Journal Name
Journal Of Engineering
Use of Gis for Creating a Project Management Data Base in Baghdad Al-Rissfa
...Show More Authors

The main objective of resources management is to supply and support the site operation with necessary resources in a way to achieve the required timing in handing over the work as well as to achieve the cost-realism within the budget estimated. The research aims to know the advantage of using GIS in management of resources as one of the new tools that keep pace with the evolution in various countries around the world also collect the vast amount of spatial data resources in one environment easily to handled and accessed quickly and this help to make the right decision regarding management of resources in various construction projects. The process of using GIS in the management and identification of resources is of extreme importance in t

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Statistics And Its Interface
Search for risk haplotype segments with GWAS data by use of finite mixture models
...Show More Authors

The region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Feb 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Strategic Human Resource Management Practices and their reflections for Organizational Performance Improvement A Survey Study of the views of a sample of Managers Baghdad Soft Drinks company/ Zafaraniya
...Show More Authors

The aims of research is to identify the role of strategic human resource management Practices in organizational performance improvement in the Baghdad soft drinks company, as well as the implications of the results for both managers and practitioners.

In order to achieve the objectives of the research, the researcher designed questionnaire included (40) items to collect the initial data from the research sample consisting of (53) Single. In light of that has been collecting and analyzing data and test hypotheses using the statistical package for Social Sciences (SPSS21), and use a number of statistical methods to achieve the goal of the research, including the means, standard deviations and simple correla

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jul 15 2023
Journal Name
2023 6th International Conference On Engineering Technology And Its Applications (iiceta)
Methodology for the Design and Programming Methods for a Smart Home
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Engineering
Deep Learning-Based Segmentation and Classification Techniques for Brain Tumor MRI: A Review
...Show More Authors

Early detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med

... Show More
View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Machine Learning And Data Mining In Pattern Recognition
A New Strategy for Case-Based Reasoning Retrieval Using Classification Based on Association
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2011
Journal Name
International Journal Of Data Analysis Techniques And Strategies
A class of efficient and modified testimators for the mean of normal distribution using complete data
...Show More Authors

View Publication
Scopus (9)
Crossref (2)
Scopus Crossref