Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental stages (pre-and post-lesion) using electromyography signals. Eight time-domain features were extracted from the collected electromyography data. To overcome the imbalanced dataset issue, synthetic minority oversampling technique was applied. Different ML classification techniques were applied including multilayer perceptron, support vector machine, K-nearest neighbors, and radial basis function network; then their performances were compared. A confusion matrix and five other statistical metrics (sensitivity, specificity, precision, accuracy, and F-measure) were used to evaluate the performance of the generated classifiers. The results showed that the best classifier for the left- and right-side data is the multilayer perceptron with a total F-measure of 79.5% and 86.0% for the left and right sides, respectively. This work will help to build a reliable classifier that can differentiate between these two phases by utilizing some extracted time-domain electromyography features.
Objectives: To evaluate the effect of non-pharmacological pain relief methods on duration of labor stage.Methodology: A quasi-experimental study design was conducted during the period of (4th July 2018 through 24th October 2018) on non-probability of (60) women (30) of them were a control group and (30) were the study group whom admitted to Al-Elwyia Maternity Teaching Hospital suffering from labor pain. A questionnaire was used as a tool of data collection Descriptive& Inferential statistical analyses were used to analyze the data.Result: The highest percentages of study and control groups were in age group (< 20) years old, primary schools graduates, housewife, from "urban area", within low category of socioeconomic scale,
... Show MoreObjectives: To evaluate the effect of non-pharmacological pain relief methods on duration of labor stage.
Methodology: A quasi-experimental study design was conducted during the period of (4th July 2018 through 24th October 2018) on non-probability of (60) women (30) of them were a control group and (30) were the study group whom admitted to Al-Elwyia Maternity Teaching Hospital suffering from labor pain. A questionnaire was used as a tool of data collection Descriptive& Inferential statistical analyses were used to analyze the data.
Result: The highest percentages of study and control groups were in age group (< 20) years old, primary schools graduates, housewife, from "urban area", within low category of socioeconomic scal
Ketoprofen has recently been proven to offer therapeutic potential in preventing cancers such as colorectal and lung tumors, as well as in treating neurological illnesses. The goal of this review is to show the methods that have been used for determining ketoprofen in pharmaceutical formulations. Precision product quality control is crucial to confirm the composition of the drugs in pharmaceutical use. Several analytical techniques, including chromatographic and spectroscopic methods, have been used for determining ketoprofen in different sample forms such as a tablet, capsule, ampoule, gel, and human plasma. The limit of detection of ketoprofen was 0.1 ng/ ml using liquid chromatography with tandem mass spectrometry, while it was 0
... Show MoreThe basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing m
... Show MoreArtificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer
... Show MoreThe main work of this paper is devoted to a new technique of constructing approximated solutions for linear delay differential equations using the basis functions power series functions with the aid of Weighted residual methods (collocations method, Galerkin’s method and least square method).
KE Sharquie, AA Noaimi, AS Alaboudi, Case Reports in Dermatological Medicine, 2011 - Cited by 24