A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques. This study comprehensively analyzes different FS approaches based on optimization algorithms for TC. We begin by introducing the primary phases involved in implementing TC. Subsequently, we explore a wide range of FS approaches for categorizing text documents and attempt to organize the existing works into four fundamental approaches: filter, wrapper, hybrid, and embedded. Furthermore, we review four optimization algorithms utilized in solving text FS problems: swarm intelligence-based, evolutionary-based, physics-based, and human behavior-related algorithms. We discuss the advantages and disadvantages of state-of-the-art studies that employ optimization algorithms for text FS methods. Additionally, we consider several aspects of each proposed method and thoroughly discuss the challenges associated with datasets, FS approaches, optimization algorithms, machine learning classifiers, and evaluation criteria employed to assess new and existing techniques. Finally, by identifying research gaps and proposing future directions, our review provides valuable guidance to researchers in developing and situating further studies within the current body of literature.
The spread of novel coronavirus disease (COVID-19) has resulted in chaos around the globe. The infected cases are still increasing, with many countries still showing a trend of growing daily cases. To forecast the trend of active cases, a mathematical model, namely the SIR model was used, to visualize the spread of COVID-19. For this article, the forecast of the spread of the virus in Malaysia has been made, assuming that all Malaysian will eventually be susceptible. With no vaccine and antiviral drug currently developed, the visualization of how the peak of infection (namely flattening the curve) can be reduced to minimize the effect of COVID-19 disease. For Malaysians, let’s ensure to follow the rules and obey the SOP to lower the
This paper focuses on the optimization of drilling parameters by utilizing “Taguchi method” to obtain the minimum surface roughness. Nine drilling experiments were performed on Al 5050 alloy using high speed steel twist drills. Three drilling parameters (feed rates, cutting speeds, and cutting tools) were used as control factors, and L9 (33) “orthogonal array” was specified for the experimental trials. Signal to Noise (S/N) Ratio and “Analysis of Variance” (ANOVA) were utilized to set the optimum control factors which minimized the surface roughness. The results were tested with the aid of statistical software package MINITAB-17. After the experimental trails, the tool diameter was found as the most important facto
... Show MoreThe research aims to highlight on the behavioural approach in accounting, and clarify the behavioural implications of the main activities of accounting, and clarify the concept of information inductance within the framework of the behavioural approach and its impact on preparing financial statements. And that the impact of financial information on the behaviour of investment decision-makers, and to achieve the goals of the research, the researcher prepared a questionnaire according to Likert five-step scale, and he took into consideration in preparing it in line with the characteristics of the study community, and that the target community for this questionnaire is the investors in the Iraq Stock Exchange. The researcher reached
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreThe paper deals with the language of Russian folklore. Folklore is a unique sphere of existence of the language, the most vivid expression of the national mentality. The folklore word embodied the perception and evaluation of the surrounding world. “What did the word in general mean for the life of the people? The word was equated ... with life itself. The word generated and explained life, it was ... the keeper of memory and the guarantee of the infinity of the future. The folklore text is studied by literary critics, ethnographers, historians, culturologists, and art historians. In the twentieth century, a new science emerged - linguo-folkloristics, the goals and objectives of which were formulated by A.T. Khrolenko only in the seven
... Show More