Background: Unlike normal EEG patterns, the epileptiform abnormal pattern is characterized by different mor phologies such as the high-frequency oscillations (HFOs) of ripples on spikes, spikes and waves, continuous and sporadic spikes, and ploy2 spikes. Several studies have reported that HFOs can be novel biomarkers in human epilepsy study. S) Method: To regenerate and investigate these patterns, we have proposed three large scale brain network models (BNM by linking the neural mass model (NMM) of Stefanescu-Jirsa 2D (S-J 2D) with our own structural con nectivity derived from the realistic biological data, so called, large-scale connectivity connectome. These models include multiple network connectivity of brain regions at different lobes from both hemispheres (left and right). The network nodes of these models were simulated based on the local dynamics of the S-J 2D model, which were generated by adjusting the global coupling between the excitatory and inhibitory populations. The connection strength between the inhibitory and excitatory neurons of the local model was also adjusted to investigate different morphology patterns. Results: The proposed network models were developed and evaluated by simulations. Different abnormal patterns of EEG brain activities such as HFO S ripples on spikes, spikes, continuous spikes, sporadic spikes and ploy2 spikes ranging from 94 to 144 Hz were regenerated. Different morphology patterns of abnormality were generated from novel BNMs and the epileptiform abnormal pattern obtained in actual EEG and other computational models were also compared. Significant: This study is able to assist researchers and clinical doctors in the field of epilepsy to better understand the complex neural mechanisms behind the abnormal oscillatory activities, which may lead to the discovery of new clinical interventions in epilepsy.
Effective decision-making process is the basis for successfully solving any engineering problem. Many decisions taken in the construction projects differ in their nature due to the complex nature of the construction projects. One of the most crucial decisions that might result in numerous issues over the course of a construction project is the selection of the contractor. This study aims to use the ordinal priority approach (OPA) for the contractor selection process in the construction industry. The proposed model involves two computer programs; the first of these will be used to evaluate the decision-makers/experts in the construction projects, while the second will be used to formul
Rapid and accurate identification of Methicillin Resistant Staphylococcus aureus is essential in limiting the spread of this bacterium. The aim of study is the detection of Methicillin Resistant Staphylococcus aureus (MRSA) and determining their susceptibility to some antimicrobial agent. A total of fifty clinical Staphylococcus aureus, isolated from the nose of health work staff in surgery unit of Kalar general hospital and from ear of patients attended to the same hospital. The susceptibilities of isolates were determined by the disc diffusion method with oxacillin (1 ?g) and cefoxitin (30 ?g), and by the mannitol salt agar supplemented with cefoxitin (MSA-CFOX), susceptibilities of isolates to other antimicrobial agent were determined b
... Show MoreModified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
The flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha
... Show More