Preferred Language
Articles
/
XRjSM5UBVTCNdQwCoSo1
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Oct 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Intelligence framework dust forecasting using regression algorithms models
...Show More Authors

<span>Dust is a common cause of health risks and also a cause of climate change, one of the most threatening problems to humans. In the recent decade, climate change in Iraq, typified by increased droughts and deserts, has generated numerous environmental issues. This study forecasts dust in five central Iraqi districts using machine learning and five regression algorithm supervised learning system framework. It was assessed using an Iraqi meteorological organization and seismology (IMOS) dataset. Simulation results show that the gradient boosting regressor (GBR) has a mean square error of 8.345 and a total accuracy ratio of 91.65%. Moreover, the results show that the decision tree (DT), where the mean square error is 8.965, c

... Show More
View Publication
Scopus (3)
Scopus Crossref
Publication Date
Mon Dec 16 2024
Journal Name
Light & Engineering
The Design and Experimental Realization of a Laser-Based Heating System Using Recycled Laser Module
...Show More Authors

Laser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable

View Publication
Publication Date
Mon Mar 07 2022
Journal Name
Journal Of Inorganic And Organometallic Polymers And Materials
Mechanical Characteristics and Thermal Stability of Hybrid Epoxy and Acrylic Polymer Coating/Nanoclay of Various Thicknesses
...Show More Authors

View Publication
Crossref (31)
Crossref
Publication Date
Mon Apr 03 2023
Journal Name
Journal Of Educational And Psychological Researches
The Effectiveness of a Training Program Based on Connectivism Theory in Developing E-Learning Competencies among Teachers of Islamic Education in Dhofar Governorate
...Show More Authors

Abstract

The study aims to build a training program based on the Connectivism Theory to develop e-learning competencies for Islamic education teachers in the Governorate of Dhofar, as well as to identify its effectiveness. The study sample consisted of (30) Islamic education teachers to implement the training program, they were randomly selected. The study used the descriptive approach to determine the electronic competencies and build the training program, and the quasi-experimental approach to determine the effectiveness of the program. The study tools were the cognitive achievement test and the observation card, which were applied before and after. The study found that the effectiveness of the training program

... Show More
View Publication Preview PDF
Publication Date
Thu Nov 14 2024
Journal Name
Journal Of Emergency Medicine, Trauma And Acute Care
Novel isolation and optimization of anti-MRSA bacteriophages using plaque-based biokinetic methods
...Show More Authors

Background: MRSA (methicillin-resistant Staphylococcus aureus) is a global health problem. Many people are looking for new ways to combat MRSA, for example by using bacteriophages (phages). It has been extremely challenging to isolate a sufficient quantity of lytic anti-MRSA phages. Therefore, new techniques for separating, refining, and reworking anti-MRSA phages were sought in this study.

Methods: Of 437 S. aureus isolates, nine clinical MRSA isolates were obtained from three hospitals in Baghdad, Iraq and two ATCC MRSA strains were used to separate wild anti-MRS

... Show More
View Publication
Scopus Crossref
Publication Date
Thu Dec 01 2022
Journal Name
Al-khwarizmi Engineering Journal
Comparative Transfer Learning Models for End-to-End Self-Driving Car
...Show More Authors

Self-driving automobiles are prominent in science and technology, which affect social and economic development. Deep learning (DL) is the most common area of study in artificial intelligence (AI). In recent years, deep learning-based solutions have been presented in the field of self-driving cars and have achieved outstanding results. Different studies investigated a variety of significant technologies for autonomous vehicles, including car navigation systems, path planning, environmental perception, as well as car control. End-to-end learning control directly converts sensory data into control commands in autonomous driving. This research aims to identify the most accurate pre-trained Deep Neural Network (DNN) for predicting the steerin

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sun Feb 24 2019
Journal Name
Iraqi Journal Of Physics
Construction and performance study of a solar - powered hybrid cooling system in Iraq
...Show More Authors

The systems cooling hybrid solar uses solar collector to convert solar energy into the source of heat for roasting Refrigerant outside of the compressor and this process helps in the transformation of Refrigerant from the gas to a liquid state in two-thirds the top of the condenser instead of two-thirds the bottom of the condenser as in Conventional cooling systems and this in turn reduces the energy necessary to lead the process of cooling. The system cooling hybrid use with a capacity of 1 ton and Refrigerant type R22 and the value of current drawn by the system limits (3.9-4.2A), the same value of electric current calculated by the system are  Conventional  within this atmosphere of Iraq, and after taking different readings

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Sep 06 2020
Journal Name
European Journal Of Dental Education
Evaluation of technology‐based learning by dental students during the pandemic outbreak of coronavirus disease 2019
...Show More Authors

View Publication
Crossref (53)
Crossref
Publication Date
Tue Mar 01 2022
Journal Name
Journal Of Hydrology
Boosted artificial intelligence model using improved alpha-guided grey wolf optimizer for groundwater level prediction: Comparative study and insight for federated learning technology
...Show More Authors

View Publication
Scopus (46)
Crossref (53)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2025
Journal Name
Journal Of Physics: Conference Series
Classification of East Shatt al-Arab Using the Novel Scene Optimum Index Factor (SOIF) and Spectral Angle Mapper classifier
...Show More Authors
Abstract<p>Accurate land use and land cover (LU/LC) classification is essential for various geospatial applications. This research applied a Spectral Angle Mapper (SAM) classifier on the Landsat 7 (ETM+ 2010) & 8 (OLI 2020) satellite scenes to identify the land cover materials of the Shatt al-Arab region which is located in the east of Basra province during ten years with an estimate of the spectral signature using ENVI 5.6 software of each cover with the proportion of its area to the area of the study region and produce maps of the classified region. The bands of these datasets were analyzed using the Optimum Index Factor (OIF) statistic. The highest OIF represents the best and most appropr</p> ... Show More
View Publication
Scopus Crossref