Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
This research aims to conduct a linguistic analysis of the translation of the novel "The Corpse Washer" by the Iraqi author Sinan Antoon. The main objective is to explore the challenges and strategies involved in translating this literary work, particularly the difficulties in translating the Baghdadi dialect and the obstacles it poses for non-native speakers. Employing a descriptive research methodology, the study examines the linguistic aspects of the translation, specifically selected conversational texts in the novel. It identifies the difficulties faced by translators in preserving the essence of the original novel and presents instances where errors occurred in translating vocabulary, conversational expressions, proverbs, and idi
... Show MoreAbstract
Background: The novel coronavirus 2 (SARS?CoV?2) pandemic is a pulmonary disease, which leads to cardiac, hematologic, and renal complications. Anticoagulants are used for COVID-19 infected patients because the infection increases the risk of thrombosis. The world health organization (WHO), recommend prophylaxis dose of anticoagulants: (Enoxaparin or unfractionated Heparin for hospitalized patients with COVID-19 disease. This has created an urgent need to identify effective medications for COVID-19 prevention and treatment. The value of COVID-19 treatments is affected by cost-effectiveness analysis (CEA) to inform relative value and how to best maximize social welfare through eviden
... Show MoreA particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
A novel fractal design scheme has been introduced in this paper to generate microstrip bandpass filter designs with miniaturized sizes for wireless applications. The presented fractal scheme is based on Minkowski-like prefractal geometry. The space-filling property and self-similarity of this fractal geometry has found to produce reduced size symmetrical structures corresponding to the successive iteration levels. The resulting filter designs are with sizes suitable for use in modern wireless communication systems. The performance of each of the generated bandpass filter structures up to the 2nd iteration has been analyzed using a method of moments (MoM) based software IE3D, which is widely adopted in microwave research and in
... Show MoreA true random TTL pulse generator was implemented and investigated for quantum key distribution systems. The random TTL signals are generated by low cost components available in the local markets. The TTL signals are obtained by using true random binary sequences based on registering photon arrival time difference registered in coincidence windows between two single – photon detectors. The true random TTL pulse generator performance was tested by using time to digital converters which gives accurate readings for photon arrival time. The proposed true random pulse TTL generator can be used in any quantum -key distribution system for random operation of the transmitters for these systems
Photonic crystal fiber interferometers (PCFIs) are widely used for sensing applications. This work presented solid core-PCFs based on Mach-Zehnder modal interferometer for sensing refractive index. The general structure of sensor was applied by splicing short lengths of PCF in both sides with conventional single mode fiber (SMF-28).To apply modal interferometer theory collapsing technique based on fusion splicing used to excite higher order modes (LP01 and LP11). A high sensitive optical spectrum analyzer (OSA) was used to monitor and record the transmitted wavelength. This work studied a Mach-Zahnder interferometer refractive index sensor based on splicing point tapered SMF-PCF-SMF. Relation between refractive index sensitivity and tape
... Show MoreThis project sought to fabricate a flexible gas sensor based on a short functionalized multi-walled carbon nanotubes (f-MWCNTs) network for nitrogen dioxide gas detection. The network was prepared by filtration from the suspension (FFS) method and modified by coating with a layer of polypyrrole conductive polymer (PPy) prepared by the oxidative chemical polymerization to improve the properties of the network. The structural, optical, and morphological properties of the f-MWCNTs and f-MWCNTs/PPy network were studied using X-ray diffraction (XRD), Fourie-transform infrared (FTIR), with an AFM (atomic force microscopy). XRD proved that the structure of f-MWCNTs is unaffected by the synthesis procedure. The FTIR spectra verified the existence o
... Show MoreIn this research, a low cost, portable, disposable, environment friendly and an easy to use lab-on-paper platform sensor was made. The sensor was constructed using a mixture of Rhodamine-6G and gold nanoparticles also Sodium chloride salt. Drop–casting method was utilized as a technique to make a platform which is a commercial office paper. A substrate was characterized using Field Emission Scanning Electron Microscope, Fourier transform infrared spectroscopy, UV-visible spectrophotometer and Raman Spectrometer. Rh-6G Raman signal was enhanced based on Surface Enhanced Raman Spectroscopy technique utilized gold nanoparticles. High Enhancement factor of Plasmonic commercial office paper reaches up to 0.9 x105 because of local surface pl
... Show MoreWith the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch
Achieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number o
... Show More