Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
This study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (
The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show MoreBackground: The accuracy of fitness of any dental casting is imperative for the success of any prosthodontic treatment. From the time that dental casting was first introduced, efforts have been made to produce more accurate and better fitted castings with minimal marginal discrepancy. The aim of this in vitro study was to evaluate the effects of three different investing and burnout techniques on the vertical marginal discrepancies ofceramometalcopings invested with two types of phosphate- bonded investments. Materials and methods: Sixty wax patterns were fabricated on a standardized prepared brass die representing an upper central incisor by the aid of a custom-made split mold. Three different investing and burnout techniques were applied
... Show MoreThis paper aims to build a modern vision for Islamic banks to ensure sustainability and growth, as well it aims to highlight the positive Iraqi steps in the Islamic banking sector. In order to build this vision, several scientific research approaches were adopted (quantitative, descriptive analytical, descriptive). As for the research community, it was for all the Iraqi private commercial banks, including Islamic banks. The research samples varied according to a diversity of the methods and the data availability. A questionnaire was constructed and conducted, measuring internal and external honesty. 50 questionnaires were distributed to Iraqi academic specialized in Islamic banking. All distributed forms were subject to a thorough analys
... Show MoreMultiple sclerosis (MS) is a chronic, inflammatory demyelinating disease of central nervous system with complex etiopathogenesis that impacts young adults (Lee et al., 2015), and MS impacts younger and middle aged character and leads to a range of disabilities that can alter their daily routines (Yara et al, 2010). Although, the exact cause of MS is still undetermined, the disease is mediated by adaptive immunity through the infiltration of T cells into the central nervous system (Bjelobaba et al, 2017). MS causes the Focal neurological symptomsand biochemical changes in the molecular level and the variation of neural cells such as loss or alteration of sensation, motor function, visible signs such as blurred vision or transient blindness,
... Show MoreThe second half of the last century witnessed a great scientific revolution that was able to bring about wide changes in various fields, including the field of physical education, which plays a fundamental role in the process of change for the better, and which knocked all the doors of modern science in various aspects and from this perspective we see that students have different capabilities And interests and motives, which require providing a differentiated education, and this depends on the necessity of knowing each student and on the school’s ability to know appropriate strategies for teaching each student so there is no single way to teach so the research problem comes in experimenting with an educational method that works on
... Show More