Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep learning techniques, which were based on a convolutional neural network (CNN) or autoencoder, to extract features and combine them with the next step of the meta-heuristic algorithm in order to select optimal features using the particle swarm optimization (PSO) algorithm. This combination sought to reduce the dimensionality of the datasets while maintaining the original performance of the data. This is considered an innovative method and ensures highly accurate classification results across various medical datasets. Several classifiers were employed to predict the diseases. The COVID-19 dataset found that the highest accuracy was 99.76% using the combination of CNN-PSO-SVM. In comparison, the brain tumor dataset obtained 99.51% accuracy, the highest accuracy derived using the combination method of autoencoder-PSO-KNN.
Global date palm production is steadily increasing and adopting technologies such as unmanned aerial vehicles (UAVs) and deep learning can reduce costs, save time, and improve productivity. To address this issue, the authors have proposed an innovative approach that uses UAVs for high-resolution aerial imaging. These images, collected by the Department of Computer Engineering at Al-Salam University in Baghdad and the Institute of Machine Design, Faculty of Mechanical Engineering, Poznan University of Technology, support improved orchard management, palm counting, and yield estimation. Precise spraying and pollination are also facilitated and accelerated, reducing overall cultivation costs. The proposed methodology involves processing captur
... Show MoreImage processing applications are currently spreading rapidly in industrial agriculture. The process of sorting agricultural fruits according to their color comes first among many studies conducted in industrial agriculture. Therefore, it is necessary to conduct a study by developing an agricultural crop separator with a low economic cost, however automatically works to increase the effectiveness and efficiency in sorting agricultural crops. In this study, colored pepper fruits were sorted using a Pixy2 camera on the basis of algorithm image analysis, and by using a TCS3200 color sensor on the basis of analyzing the outer surface of the pepper fruits, thus This separation process is done by specifying the pepper according to the color of it
... Show MoreObjective: Breast cancer is regarded as a deadly disease in women causing lots of mortalities. Early diagnosis of breast cancer with appropriate tumor biomarkers may facilitate early treatment of the disease, thus reducing the mortality rate. The purpose of the current study is to improve early diagnosis of breast by proposing a two-stage classification of breast tumor biomarkers fora sample of Iraqi women.
Methods: In this study, a two-stage classification system is proposed and tested with four machine learning classifiers. In the first stage, breast features (demographic, blood and salivary-based attributes) are classified into normal or abnormal cases, while in the second stage the abnormal breast cases are
... Show MoreThe novel was generally distinguished from other literary arts in its connection with the living reality as an imaginative practice that relies on political, economic, social, intellectual and cultural references and as a crucial tool in reading cultural references and dive deep into reality. As every novelist has a vision to embody this reality. As every novelist has a vision to embody this reality. The novel of ("Exceeded border by Hammed Al-Kafa’i) is a considered a fertile field for presenting social issues in their apparent structure and revealing the cultural patterns behind them which lies in its deep structure. The novel here moves its characters in its imaginary world in a way that it becomes more capable of adaptation and crysta
... Show MoreDocument source identification in printer forensics involves determining the origin of a printed document based on characteristics such as the printer model, serial number, defects, or unique printing artifacts. This process is crucial in forensic investigations, particularly in cases involving counterfeit documents or unauthorized printing. However, consistent pattern identification across various printer types remains challenging, especially when efforts are made to alter printer-generated artifacts. Machine learning models are often used in these tasks, but selecting discriminative features while minimizing noise is essential. Traditional KNN classifiers require a careful selection of distance metrics to capture relevant printing
... Show MoreThis paper describes a new proposed structure of the Proportional Integral Derivative (PID) controller based on modified Elman neural network for the DC-DC buck converter system which is used in battery operation of the portable devices. The Dolphin Echolocation Optimization (DEO) algorithm is considered as a perfect on-line tuning technique therefore, it was used for tuning and obtaining the parameters of the modified Elman neural-PID controller to avoid the local minimum problem during learning the proposed controller. Simulation results show that the best weight parameters of the proposed controller, which are taken from the DEO, lead to find the best action and unsaturated state that will stabilize the Buck converter system performan
... Show MoreOur aim was to investigate the inclusion of sexual and reproductive health and rights (SRHR) topics in medical curricula and the perceived need for, feasibility of, and barriers to teaching SRHR. We distributed a survey with questions on SRHR content, and factors regulating SRHR content, to medical universities worldwide using chain referral. Associations between high SRHR content and independent variables were analyzed using unconditional linear regression or χ2 test. Text data were analyzed by thematic analysis. We collected data from 219 respondents, 143 universities and 54 countries. Clinical SRHR topics such as safe pregnancy and childbirth (95.7%) and contraceptive methods