The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm has been developed for clustering purpose. Mainly, the purpose of using modified K-means clustering technique is to group the similar features into (K) templates in order to simulate the differences in the ways that human express each emotion. To evaluate the proposed system, a subset from Cohen-Kanade (CK) dataset have been used, it consists of 870 facial images samples for the seven basic emotions (angry, disgust, fear, happy, normal, sad, and surprise). The conducted test results indicated that SVM classifier can lead to higher performance in comparison with the results of other proposed methods due to its desirable characteristics (such as large-margin separation, good generalization performance, etc.).
Face Recognition Systems (FRS) are increasingly targeted by morphing attacks, where facial features of multiple individuals are blended into a synthetic image to deceive biometric verification. This paper proposes an enhanced Siamese Neural Network (SNN)-based system for robust morph detection. The methodology involves four stages. First, a dataset of real and morphed images is generated using StyleGAN, producing high-quality facial images. Second, facial regions are extracted using Faster Region-based Convolutional Neural Networks (R-CNN) to isolate relevant features and eliminate background noise. Third, a Local Binary Pattern-Convolutional Neural Network (LBP-CNN) is used to build a baseline FRS and assess its susceptibility to d
... Show Moreobjective: To evaluate the influence of monolithic zirconia brand, thickness, and substrate color on color matching accuracy when optically coupled to abutment substrates. Methods: A total of 180 samples of two brands of monolithic zirconia [Prettau Anterior (PA), Ceramill Zolid FX Multicolor (CZ)] were prepared in three different thicknesses (0.8 mm, 1.5 mm, and 2 mm) with a standardized 10 mm diameter. Color properties of the samples were assessed using spectrophotometry at baseline and after coupling to three substrate types: standard dentin, discolored dentin, and titanium. Color differences (ΔE) were calculated and statistically analyzed by 3-way ANOVA and pairwise comparison ( α=0.05). Results: The brand and material thickness, at
... Show MoreThe analysis of the classic principal components are sensitive to the outliers where they are calculated from the characteristic values and characteristic vectors of correlation matrix or variance Non-Robust, which yields an incorrect results in the case of these data contains the outliers values. In order to treat this problem, we resort to use the robust methods where there are many robust methods Will be touched to some of them.
The robust measurement estimators include the measurement of direct robust estimators for characteristic values by using characteristic vectors without relying on robust estimators for the variance and covariance matrices. Also the analysis of the princ
... Show MoreIn this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.
Background: The role of prophylactic antibiotics remains controversial. It is clear that actively facial fractures are considered as clean contaminated and should be treated with therapeutic antibiotics; however, there is widespread variability in the use, type, timing, and duration of prophylactic antibiotic administrated in practice today. There is an adverse effect of increased antibiotic resistance, as well as costs, it is important to review the current evidence for the role of prophylactic antibiotics in compound facial fractures. The purpose of this study is to evaluate the role and significance of preoperative, perioperative and postoperative antibiotic prophylaxis for patients when there is already an infective focus, such as co
... Show MoreThis study aims to estimate the accuracy of digital elevation models (DEM) which are created with exploitation of open source Google Earth data and comparing with the widely available DEM datasets, Shuttle Radar Topography Mission (SRTM), version 3, and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), version 2. The GPS technique is used in this study to produce digital elevation raster with a high level of accuracy, as reference raster, compared to the DEM datasets. Baghdad University, Al Jadriya campus, is selected as a study area. Besides, 151 reference points were created within the study area to evaluate the results based on the values of RMS.Furthermore, th
... Show More