The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm has been developed for clustering purpose. Mainly, the purpose of using modified K-means clustering technique is to group the similar features into (K) templates in order to simulate the differences in the ways that human express each emotion. To evaluate the proposed system, a subset from Cohen-Kanade (CK) dataset have been used, it consists of 870 facial images samples for the seven basic emotions (angry, disgust, fear, happy, normal, sad, and surprise). The conducted test results indicated that SVM classifier can lead to higher performance in comparison with the results of other proposed methods due to its desirable characteristics (such as large-margin separation, good generalization performance, etc.).
Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreInformation processing has an important application which is speech recognition. In this paper, a two hybrid techniques have been presented. The first one is a 3-level hybrid of Stationary Wavelet Transform (S) and Discrete Wavelet Transform (W) and the second one is a 3-level hybrid of Discrete Wavelet Transform (W) and Multi-wavelet Transforms (M). To choose the best 3-level hybrid in each technique, a comparison according to five factors has been implemented and the best results are WWS, WWW, and MWM. Speech recognition is performed on WWS, WWW, and MWM using Euclidean distance (Ecl) and Dynamic Time Warping (DTW). The match performance is (98%) using DTW in MWM, while in the WWS and WWW are (74%) and (78%) respectively, but when using (
... Show MoreTeen-Computer Interaction (TeenCI) stands in an infant phase and emerging in positive path. Compared to Human-Computer Interaction (generally dedicated to adult) and Child-Computer Interaction, TeenCI gets less interest in terms of research efforts and publications. This has revealed extensive prospects for researchers to explore and contribute in the region of computer design and evaluation for teen, in specific. As a subclass of HCI and a complementary for CCI, TeenCI that tolerates teen group, should be taken significant concern in the sense of its context, nature, development, characteristics and architecture. This paper tends to discover teen’s emotion contribution as the first attempt towards building a conceptual model for TeenC
... Show MoreFacial recognition has been an active field of imaging science. With the recent progresses in computer vision development, it is extensively applied in various areas, especially in law enforcement and security. Human face is a viable biometric that could be effectively used in both identification and verification. Thus far, regardless of a facial model and relevant metrics employed, its main shortcoming is that it requires a facial image, against which comparison is made. Therefore, closed circuit televisions and a facial database are always needed in an operational system. For the last few decades, unfortunately, we have experienced an emergence of asymmetric warfare, where acts of terrorism are often committed in secluded area with no
... Show MoreHepatitis is one of the diseases that has become more developed in recent years in terms of the high number of infections. Hepatitis causes inflammation that destroys liver cells, and it occurs as a result of viruses, bacteria, blood transfusions, and others. There are five types of hepatitis viruses, which are (A, B, C, D, E) according to their severity. The disease varies by type. Accurate and early diagnosis is the best way to prevent disease, as it allows infected people to take preventive steps so that they do not transmit the difference to other people, and diagnosis using artificial intelligence gives an accurate and rapid diagnostic result. Where the analytical method of the data relied on the radial basis network to diagnose the
... Show MoreKE Sharquie, AA Noaimi, Pigmentary Disorders, 2014 - Cited by 5
HM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
Aim: The purpose of this study was to analyze the patterns of facial fractures in children and to compare them between preschool- and school-aged children. Materials and methods: This retrospective observational study included 57 children with facial fractures. The variables analyzed were the age of the patients—divided into a preschool-aged group (0–5 years) and a school-aged group (6–12 years)—gender, cause of trauma, the facial bones involved, the pattern of fracture, the modality of treatment used, the time between injury and treatment, and the postoperative complications. Results: The incidence of facial fractures in children ≤12 years was 30.2%. The patients consisted of 40 (70.2%) males and 17 (29.8%) females, and most pati
... Show More