This paper presents an experimental study for strengthening existing columns against axial compressive loads. The objective of this work is to study the behavior of concrete square columns strengthening with circulation technique. In Iraq, there are significantly more reinforced rectangular and square columns than reinforced circular columns in reinforced concrete buildings. Moreover, early research studies indicated that strengthening of rectangular or square columns using wraps of CFRP (Carbon Fiber Reinforced Polymer) provided rather little enhancement to their load-carrying capacity. In this paper, shape modification technique was performed to modify the shape (cross section) of the columns from square columns into circular columns. Shape modification technique is also called circularization technique because the cross section is modified from square into circular cross section. Then, the circularized columns were wrapped with CFRP wraps. Shape modification is the strengthening method adopted in this paper as a mean to strengthen existing square columns. Columns studied in this paper are short columns with square sections as a special case of rectangular columns. Columns in this study are plain concrete columns (having concrete strength of = 24.41 MPa) with no internal steel reinforcement. The aim of this research is to study experimentally the behavior of circularized concrete square columns confined with CFRP wraps. Then, for better understanding, the results were compared with another, more widely used, strengthening technique which is the direct wrapping of square columns with CFRP wraps. Thus, investigating experimentally the effectiveness of the two aforementioned strengthening techniques in increasing the load-carrying capacity and ductility of the existing concrete columns. The methodology of this research is that six plain concrete short square columns were casted. These six columns were exerted to compressive pressure using concrete testing machine. These six columns were divided into three groups, each group consisted of 2 columns. The three groups were classified as follows: first group (titled L0) consisted of two square columns which were not strengthened by any method, second group (titled L1) consisted of two square columns confined by one layer of CFRP wraps, finally, the third group (titled LC1) consisted of two circularized square columns confined by one layer of CFRP wraps.Experimental results showed that load bearing capacity and ductility of square columns have been significantly enhanced. Test results showed that shape modification technique (columns LC1) produced enhancement in load carrying capacity about 167.8 % of the original non-strengthened columns (columns L0). Furthermore, square columns wrapped by one layer of CFRP wraps (columns L1) produced enhancement in load carrying capacity about 56.1% of the original non-strengthened columns (columns L0). As such, it was evident that circularization technique resulted in enhancement in load carrying capacity far more than the enhancement obtained from wrapping the square columns with CFRP wraps.
Impact strength of self-compacted concrete is a field of interest, mostly when the concrete is produced from sustainable materials. This research's main objective is to clarify the ability to use two types of Portland limestone cement (Karasta and Tasluja) in self compacted concrete under impact loading, further to the economic and environmental benefits of the limestone cement. The impact loading was applied by a low-speed test, using the drop ball on concrete. Moreover, the study reveals the resistance of the grids reinforced concrete to impact loading by using polymer grid, and steel grid reinforced concrete slabs. Mixes reinforced by steel mesh had the highest results, indicating that the steel mesh was more robust because it had
... Show MoreThis paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently,
... Show MoreThis paper presents a study to investigate the behavior of post-tensioned segmental concrete beams that exposed to high-temperature. The experimental program included fabricating and testing twelve simply supported beams that divided into three groups depending on the number of precasting concrete segments. All specimens were prepared with an identical length of 3150 mm and differed in the number of the incorporated segments of the beam (9, 7, or 5 segments). To simulate the genuine fire disasters, nine out of twelve beams were exposed to a high-temperature flame for one hour. Based on the standard fire curve (ASTM – E119), the temperatures of 300◦C (572◦F), 500◦C (932◦F), and 700◦C (1292◦F) were adopted. Consequently,
... Show MoreIn this study, the response of ten composite post-tensioned concrete beams topped by a reinforced concrete deck with adequate reinforcing shear connectors is investigated. Depending on the concrete compressive strength of the deck slab (20, 30, and 40 MPa), beams are grouped into three categories. Seven of these beams are exposed to a fire attack of 700 and 800 °C temperature simultaneously with or without the presence of a uniformly distributed sustained static loading. After cooling back to ambient temperature, these composite beams are loaded up to failure, using a force control module, by monotonic static loading in a four-point-bending setup with two symmetrical concentrated loads applied in
This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS) had higher compressive strength, modulus of rupture, splitting tension, str
... Show MoreThis paper presents experimental results regarding the behaviours of eight simply supported partially prestressed concrete beams with internally unbonded tendons, focusing particularly on the effect of three different variables: concrete compressive strength,
Two dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac
... Show More