As a result of the significance of image compression in reducing the volume of data, the requirement for this compression permanently necessary; therefore, will be transferred more quickly using the communication channels and kept in less space in memory. In this study, an efficient compression system is suggested; it depends on using transform coding (Discrete Cosine Transform or bi-orthogonal (tap-9/7) wavelet transform) and LZW compression technique. The suggested scheme was applied to color and gray models then the transform coding is applied to decompose each color and gray sub-band individually. The quantization process is performed followed by LZW coding to compress the images. The suggested system was applied on a set of seven standard images; the achieved compression results showed good efficiency in increasing the compression while keeping the fidelity level with the acceptable level. The acquired compression ratios are 20 for color Lena and 12.4 for gray Lena, both are 32 dB of PSNR.
Forty lower premolars with single root canals prepared with ProtaperNext files to size 25, and obturated with GP/sealer using lateral compaction. Teeth divided randomly into four groups (group n=10). Protaper universal retreatment kit (PUR), D-Race desobturation files (DRD), R-Endo retreatment kit (RE) and Hedstrom (H) files (control) were used to remove GP/sealer in each group. Removal effectiveness assessed by measuring the GP /sealer remnants in the roots after sectioning them into two halves. Stereomicroscope with a digital camera used to capture digital images. Images processed by ImageJ software to measure the percentage of GP/sealer remnants surface area in total, coronal, middle and apical areas of the canal. In the coronal area,
... Show MoreBackground: Odontogenic cysts include a group of osseodestructive lesions that frequently affect the jaws. Those cysts could derive from odontogenic epithelium and occur in the tooth-bearing regions of the jaws. The aims of this study were to evaluate the immunohistochemical expression of Cyclin D1 in Keratocystic Odontogenic Tumor, Dentigerous cyst and Radicular cyst in epithelium and connective tissue capsule. Materials and Methods: In this study, thirty formalin fixed paraffin embedded tissue blocks of Odontogenic cysts and Tumor, consist of 14 Keratocystic Odontogenic Tumor, 8 dentigerous cysts and 8 radicular cysts were analyzed immunohistochemically for the presence of Cyclin D1 proteins. Results: Strong to moderate expression of Cy
... Show MoreComparative Analysis of Economic Policy Stability between Monarchical and Republican Systems: A Theoretical Fundamental Research
Coronavirus disease (COVID-19) is an acute disease that affects the respiratory system which initially appeared in Wuhan, China. In Feb 2019 the sickness began to spread swiftly throughout the entire planet, causing significant health, social, and economic problems. Time series is an important statistical method used to study and analyze a particular phenomenon, identify its pattern and factors, and use it to predict future values. The main focus of the research is to shed light on the study of SARIMA, NARNN, and hybrid models, expecting that the series comprises both linear and non-linear compounds, and that the ARIMA model can deal with the linear component and the NARNN model can deal with the non-linear component. The models
... Show MoreThe present paper addresses cultivation of Chlorella vulgaris microalgae using airlift photobioreactor that sparged with 5% CO 2 /air. The experimental data were compared with that obtained from bioreactor aerated with air and unsparged bioreactor. The results showed that the concentration of biomass is 0.36 g l -1 in sparged bioreactor with CO2/air, while, the concentration of biomass reached to 0.069 g l -1 in the unsparged bioreactor. They showed also that aerated ioreactor.with CO2/air gives more biomass production even the bioreactor was aerated with air. This study proved that application of sparging system for ultivation of Chlorella vulgaris microalgae using either CO2/air mixture or air has a significant
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show More