Objectives: This study aims to assess and compare the micro-shear bond strength (μSBS) of a novel resin-modified glass-ionomer luting cement functionalized with a methacrylate co-monomer containing a phosphoric acid group, 30 wt% 2-(methacryloxy) ethyl phosphate (2-MEP), with different substrates (dentin, enamel, zirconia, and base metal alloy). This assessment is conducted in comparison with conventional resin-modified glass ionomer cement and self-adhesive resin cement. Materials and methods: In this in vitro study, ninety-six specimens were prepared and categorized into four groups: enamel (A), dentin (B), zirconia (C), and base metal alloys (D). Enamel (E) and dentin (D) specimens were obtained from 30 human maxillary first premolars extracted during orthodontic treatment. For zirconia and metal alloys, 48 disks were manufactured using IPS e.max ZirCAD through dry milling and Co–Cr powder alloy by selective laser milling. Each group was further subdivided into three subgroups (n = 8) according to the luting cement used: (1) Fuji PLUS resin-modified glass ionomer luting cement (FP) as a control cement, (2) modified control cement (eRMGIC), and (3) RelyX U 200 (RU 200) self-adhesive resin cement. The two-way analysis of variance and Tukey’s HSD were used to assess the data obtained from measuring the μSBS of the samples. Results: The results of this study showed that the mean μSBS values of eRMGIC were statistically higher compared to FP in all tested groups (p < 0.001). The mean μSBS results of eRMGIC were non-significantly different from those recorded by RU 200 for all substrates except for the dentin substrate, where the RU200 cement produced significantly higher strength (p < 0.001). The failure modes were limited to a combination of mixed and adhesive failures without pure cohesive failure. Significance: The functionalization of FP with an organophosphorus co-monomer (2-MEP) directly affects the adhesion performance of the functionalized cement, which may be utilized to develop a new type of acid-base cement. It exhibited a performance comparable to that of resin-based cement and should serve well under different clinical conditions.
The utilization of sugarcane molasses (SCM), a byproduct of sugar refining, offers a promising bio-based alternative to conventional chemical admixtures in cementitious systems. This study investigates the effects of SCM at five dosage levels, 0.25%, 0.50%, 0.75%, 1.00%, and 1.25% by weight of cement, on cement mortar performance across fresh, mechanical, thermal, durability, and density criteria. A comprehensive experimental methodology was employed, including flow table testing, compressive strength (7, 14, and 28 days) and flexural strength measurements, embedded thermal sensors for real-time hydration monitoring, water absorption and chloride ion penetration tests, as well as 28-day density determination. Results revealed clear
... Show MoreBackground: The aim of the study was to investigate the effect of surface treatments of zirconia (grinding and sandblast with 50μm, 100 μm) on shear bond strength between zirconia core and veneering ceramic. Material and methods: Twenty-eight presintered Y-TZP ceramic specimens (IPS e.max ZirCAD, Ivoclar vivadent) were fabricated and sintered according to manufacturer’s instructions. The core specimens were divided randomly in to 4 groups, group 1: no surface treatment, group2: zirconia specimens were ground with silicon carbide paper up to1200 grit under water cooling, group3: zirconia specimens were ground and sandblast with 100 μm alumina, group 4: zirconia specimens were ground and sandblast with 50 μm alumina. Surfa
... Show MoreBackground: Thermocycling simulates the temperature dynamics in the oral environment. This in vitro study done to measure and compare the effect of thermocycling on the shear bond strength of stainless steel and sapphire brackets bonded to human enamel teeth using light cured orthodontic adhesive and debonded at various time, and to measure adhesive remnant index after debonding. Materials and Methods: one-hundred-twenty extracted upper first premolars for orthodontic reason were used in this study; depending on weather thermocycled or not, the sample was divided into two main groups, then within each group 30 teeth were used for stainless-steel brackets (Bionic®) and for sapphire brackets (Pure®). Both groups were subdivided into three
... Show More
Background: In this study we evaluate the effect of plasma treatment (oxygen and argon) gas in two different exposure times on the surface of heat cure and light cure acrylic resin. Materials and method: 100 specimens of heat cure and light cure acrylic resin were fabricated. The measurements of the samples were (75mm, 25mm and 4.5mm) length, width and depth respectively with stopper of 3mm depth. Two types of gas used oxygen and argon in (5,10) min by using (DC-glow discharge plasma device) then we apply cold cure soft lining material, with the help of Instron machine we test the shear stress value. Results: A highly significant effect after argon and oxygen gases treatment in both 5 and 10 min exposure times on shear bond strength to soft
... Show MoreWe aimed to examine the effect of amoxicillin and azithromycin suspensions on the microhardness of sliver-reinforced glass ionomer and nano-resin modified glass ionomer (GI). Method: Thirty discs (2mm height x 4mm diameter) of each type of GI were prepared, which were randomly assigned to amoxicillin, azithromycin, and artificial saliva groups. Microhardness was evaluated by Vickers hardness test before and after three immersion cycles. Results: The overall model (P < 0.001), before/after intervention (P < 0.001), intervention group (type of antibiotic) (P=0.013), and type of glass ionomer (P < 0.001) showed significant differences among study groups (P < 0.001). Post hoc test showed only non-significant before/after difference for Azithrom
... Show MoreBackground: Lack of durability of the bond of the dental adhesive systems to tooth structure is one of the most important problems in tooth colored restorative work. This in vitro study was performed to evaluate the effect of 2% chlorhexidine gluconate(CHX) on dentin bond strength by using total etch adhesive system at twenty-four hours and three months of water storage. Material and methods:A flat dentin surface was prepared for forty sound human maxillary premolar teeth which were acid etched with 36% phosphoric acid gel after being divided randomly into four groups of ten teeth each according to storage time and CHX application, theCHX was applied for 60 seconds before adhesive application for groups I and III which were tested after twe
... Show MoreObjective: To enhance bonding strength between thermoplastic denture base and acrylic soft liner through ethyl acetate surface treatment. Materials and Methods: Modifications of thermoplastic acrylic denture base surface were investigated with SEM. FTIR was used to detect whether there was a chemical bond between thermoplastic acrylic and the organic solvent. A total of 80 samples were prepared and divided into 20 samples for the surface roughness test and 60 samples for the shear bond strength test. Failure type was assessed visually. Results: Shear bond strength and surface roughness values of un treated samples were lower in comparison to surface treated groups; the greatest post thermocycling bond strength value was recorded for the sam
... Show MoreI mpact strength for Epoxy/Polyurethane, Blends and their composites with two
layers of Glass fibers (0-90) are calculated.
The impact strength of the blends and composites decrease with increasing weight
by weisht percentage of polyurethane . This result is attributed to the high elasticity
of PU , and to the immiscibility between the polymer blends as well as the fiber
delaminates
Background: The bond strength of the root canal sealers to dentin seems to be a very important property for maintaining the integrity and the seal of root canal filling. The aim of this study was to evaluate the shear bond strength of four different obturation systems using push-out test. Materials and methods: Forty straight palatal roots of the maxillary first molars teeth were used in this study, these roots were instrumented using crown down technique and ProTaper system, instrumentation were done with copious irrigation of 2.5% sodium hypochlorite and 17% buffered solution of EDTA was used as final irrigant followed by distilled water, roots were randomly divided into four groups according to the obturation system (ten teeth for each g
... Show More