Objectives: This study aims to assess and compare the micro-shear bond strength (μSBS) of a novel resin-modified glass-ionomer luting cement functionalized with a methacrylate co-monomer containing a phosphoric acid group, 30 wt% 2-(methacryloxy) ethyl phosphate (2-MEP), with different substrates (dentin, enamel, zirconia, and base metal alloy). This assessment is conducted in comparison with conventional resin-modified glass ionomer cement and self-adhesive resin cement. Materials and methods: In this in vitro study, ninety-six specimens were prepared and categorized into four groups: enamel (A), dentin (B), zirconia (C), and base metal alloys (D). Enamel (E) and dentin (D) specimens were obtained from 30 human maxillary first premolars extracted during orthodontic treatment. For zirconia and metal alloys, 48 disks were manufactured using IPS e.max ZirCAD through dry milling and Co–Cr powder alloy by selective laser milling. Each group was further subdivided into three subgroups (n = 8) according to the luting cement used: (1) Fuji PLUS resin-modified glass ionomer luting cement (FP) as a control cement, (2) modified control cement (eRMGIC), and (3) RelyX U 200 (RU 200) self-adhesive resin cement. The two-way analysis of variance and Tukey’s HSD were used to assess the data obtained from measuring the μSBS of the samples. Results: The results of this study showed that the mean μSBS values of eRMGIC were statistically higher compared to FP in all tested groups (p < 0.001). The mean μSBS results of eRMGIC were non-significantly different from those recorded by RU 200 for all substrates except for the dentin substrate, where the RU200 cement produced significantly higher strength (p < 0.001). The failure modes were limited to a combination of mixed and adhesive failures without pure cohesive failure. Significance: The functionalization of FP with an organophosphorus co-monomer (2-MEP) directly affects the adhesion performance of the functionalized cement, which may be utilized to develop a new type of acid-base cement. It exhibited a performance comparable to that of resin-based cement and should serve well under different clinical conditions.
To achieve sustainability, use waste materials to make concrete to use alternative components and reduce the production of Portland cement. Lime cement was used instead of Portland cement, and 15% of the cement's weight was replaced with silica fume. Also used were eco-friendly fibers (copper fiber) made from recycled electrical. This work examines the impact of utilizing sustainable copper fiber with different aspect ratios (l/d) on some mechanical properties of high-strength green concrete. A high-strength cement mixture with a compressive strength of 65 MPa in line with ACI 211.4R was required to complete the assignment. Copper fibers of 1% by volume of concrete were employed in mixes with four different aspect ratios
... Show MoreThe present work is concerned with the investigation of the behavior and ultimate capacity of axially loaded reinforced concrete columns in presence of transverse openings under axial load plus uniaxial bending. The experimental program includes testing of twenty reinforced concrete columns (150 × 150 × 700 mm) under concentric and eccentric load. Parameters considered include opening size, load eccentricity and influence of the direction of load eccentricity with respect to the longitudinal axis of the opening. Experimental results are discussed based on load – lateral mid height deflection curves, load – longitudinal shortening behavior, ultimate load and failure modes. It is found that when the direction of load
... Show MoreThis study investigated the structural behavior of a beam–slab member fabricated using a steel C-Purlins beam carrying a profile steel sheet slab covered by a dry board sheet filled with recycled aggregate concrete, called a CBPDS member. This concept was developed to reduce the cost and self-weight of the composite beam–slab system; it replaces the hot-rolled steel I-beam with a steel C-Purlins section, which is easier to fabricate and weighs less. For this purpose, six full-scale CBPDS specimens were tested under four-point static bending. This study investigated the effect of using double C-Purlins beams face-to-face as connected or separated sections and the effect of using concrete material that contains different recycled
... Show MoreAbstract In this study, an investigation is conducted to realise the possibility of organic materials use in radio frequency (RF) electronics for RF-energy harvesting. Iraqi palm tree remnants mixed with nickel oxide nanoparticles hosted in polyethylene, INP substrates, is proposed for this study. Moreover, a metamaterial (MTM) antenna is printed on the created INP substrate of 0.8 mm thickness using silver nanoparticles conductive ink. The fabricated antenna performances are instigated numerically than validated experimentally in terms of S11 spectra and radiation patterns. It is found that the proposed antenna shows an ultra-wide band matching bandwidth to cover the frequencies from 2.4 to 10 GHz with bore-sight gain variation from 2.2 to
... Show MoreAn electrochemical sensor based on manganese dioxide nanorodMnO2and Graphene oxide (GO) functionalized with 4-amino, 3-substituted 1H, 1, 2, 4 Triazole 5(4H) thion (FGO)/MnO2Nanocompositewas developed for voltammetric determination of Tetracycline (TET).The working electrode WE of SPCE was modified bya drop casting method. X-ray powder diffractometer (XRD), scanning electron microscopy (SEM) and FT-IR were employed to characterize the synthesized FGO/MnO2. The determination of TET at the modified electrode was studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in the phosphate buffer solution (PBS).TET show sharp increase in the oxidation peaks in the pH 2.Voltammetric characteristics of TET (Epa, Ipa) were estimate
... Show MoreThis study investigates the influence of five nanomaterials nano-alumina (NA), nano-silica (NS), nano-titanium (NT), nano-zinc oxide (NZ), and carbon nanotubes (CNT)on enhancing the fatigue resistance of asphalt binders. NA, NS, and NT were incorporated at dosages of 2%, 4%, 6%, 8%, and 10%, while NZ and CNT were added at 1%, 2%, 3%, 4%, and 5%. A series of physical, rheological, and performance-based tests were conducted, including penetration, softening point, ductility, and rotational viscosity. Based on the outcomes of the overall desirability evaluation, the first three dosages of each nanomaterial were selected for further testing due to their superior workability and binder flexibility. Subsequent investigations included the high-tem
... Show MoreBackground: University dental students perceived a higher level of stress prior to the final exam associated with raised salivary cortisol levels which could be considered as a useful noninvasive biomarker for measuring acute stress. Using a Helkimo anamnestic and clinical dysfunction scoring for temporomandibular disorders can give a better insight about the association of this marker and temporomandibular joint disorders. The aim of this study was to evaluation level of salivary cortisol in stressor students with temporomandibular disorder and the relation between this marker in relation to temporomandibular disorder severity. This might give a better understanding to the role of psychological stress as an etiological factor for developin
... Show MoreThe posterior regions of the jaws usually represent a significant risk for implant surgery. A non-valid assessment of the available bone height may lead to either perforation of the maxillary sinus floor or encroachment of the inferior alveolar nerve and consequently to implant failure. This study aimed to evaluate the reliability of surgeon’s decision in appraising the appropriate implant length, in respect to vital anatomical structures, using panoramic radiographs.
Only implants that are inserted in relation to the maxillary sinus (MS) or the mandibular canal (MC) were enrolled