Objectives: This study aims to assess and compare the micro-shear bond strength (μSBS) of a novel resin-modified glass-ionomer luting cement functionalized with a methacrylate co-monomer containing a phosphoric acid group, 30 wt% 2-(methacryloxy) ethyl phosphate (2-MEP), with different substrates (dentin, enamel, zirconia, and base metal alloy). This assessment is conducted in comparison with conventional resin-modified glass ionomer cement and self-adhesive resin cement. Materials and methods: In this in vitro study, ninety-six specimens were prepared and categorized into four groups: enamel (A), dentin (B), zirconia (C), and base metal alloys (D). Enamel (E) and dentin (D) specimens were obtained from 30 human maxillary first premolars extracted during orthodontic treatment. For zirconia and metal alloys, 48 disks were manufactured using IPS e.max ZirCAD through dry milling and Co–Cr powder alloy by selective laser milling. Each group was further subdivided into three subgroups (n = 8) according to the luting cement used: (1) Fuji PLUS resin-modified glass ionomer luting cement (FP) as a control cement, (2) modified control cement (eRMGIC), and (3) RelyX U 200 (RU 200) self-adhesive resin cement. The two-way analysis of variance and Tukey’s HSD were used to assess the data obtained from measuring the μSBS of the samples. Results: The results of this study showed that the mean μSBS values of eRMGIC were statistically higher compared to FP in all tested groups (p < 0.001). The mean μSBS results of eRMGIC were non-significantly different from those recorded by RU 200 for all substrates except for the dentin substrate, where the RU200 cement produced significantly higher strength (p < 0.001). The failure modes were limited to a combination of mixed and adhesive failures without pure cohesive failure. Significance: The functionalization of FP with an organophosphorus co-monomer (2-MEP) directly affects the adhesion performance of the functionalized cement, which may be utilized to develop a new type of acid-base cement. It exhibited a performance comparable to that of resin-based cement and should serve well under different clinical conditions.
A Strength Pareto Evolutionary Algorithm 2 (SPEA 2) approach for solving the multi-objective Environmental / Economic Power Dispatch (EEPD) problem is presented in this paper. In the past fuel cost consumption minimization was the aim (a single objective function) of economic power dispatch problem. Since the clean air act amendments have been applied to reduce SO2 and NOX emissions from power plants, the utilities change their strategies in order to reduce pollution and atmospheric emission as well, adding emission minimization as other objective function made economic power dispatch (EPD) a multi-objective problem having conflicting objectives. SPEA2 is the improved version of SPEA with better fitness assignment, density estimation, an
... Show MoreBackground: with the advent of new postmaterial in dentistry, it has become important to measure fitness of post restoration along the horizontal plane of the root space.This study aimed to measure and compare, the cement film thickness of conventional zinc phosphate cement in micrometer between the post and root dentin along horizontal plane at different post space regions (coronal, middle and apical) of four types of posts, by using stereomicroscopy. Material and methods: Thirty-two extracted human maxillary canines, mandibular canines and maxillary central incisors (n=32) were instrumented with ProTaper system files (hand use) and obturated with gutta-percha for ProTaper and AH26® root canal sealer. After 24hrs of incubation at 37ºC, p
... Show MoreShort Multi-Walled Carbon Nanotubes functionalized with OH group (MWCNTs-OH) were used to synthesize flexible MWCNTs networks. The MWCNTs suspension was synthesized using Benzoquinone (BQ) and N, N Dimethylformamide alcohol (DMF) in specific values and then deposited on filter paper by filtration from suspension (FFS) method. Polypyrrole (PPy) conductive polymer doped with metallic nanoparticles (MNPs) prepared using in-situ chemical polymerization method. To improve the properties of the MWCNTs networks, a coating layer of (PPy) conductive polymer, PPy:Ag nanoparticles, and PPy: Cu nanoparticles were applied to the network. The fabricated networks were characterized using an X-ray diffractometer (XRD), UV-Vis. spectrometer, and Ato
... Show MoreObjective: One of the most important practical deficiencies of present denture base materials is fracture, therefore many
attempts have been made to reinforce of the repaired denture base resin. A desirable objective for this service is to obtain
optimum strength for repairs, which can be achieved by making available a good bond between original and repaired
materials.
Methodology: The present study was carried out to evaluate and compare the transverse strength of acrylic specimens
repaired by two different materials (hot-cure and cold-cure acrylic resin). A total of 50 specimens were prepared by hot
(40) repair: (10) by hot with retention bead, (10) by cold with retention bead and (10) repair by hot only, (10) repair
A reinforced concrete frame is referred as "RIGID FRAMES". However, researches indicate that the Beam-Column joint (BCJ) is definitely not rigid. In addition, extensive research shows that failure may occur at the joint instead of in the beam or the column. Joint failure is known to be a catastrophic type which is difficult to repair.
This study was carried out to investigate the effect of hoops and column axial load on the shear strength of high-strength fiber reinforced Beam-Column Joints by using a numerical model based on finite element method using computer program ANSYS (Version 11.0). The variables are: diameter of hoops and magnitude of column axial load.
The theoretical results obtained from ANSYS program are in a good a