Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such as decision tree and nearest neighbor search. The proposed method can handle streaming data efficiently and, for entropy discretization, provide su the optimal split value.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreThe study consisted in the development and use of a practical method to detect and
monitor, analyze and produce maps of changes in land use and land cover in the district of
Mahmudiya in Baghdad during the period 1990-2007 using the applications of remote sensing
techniques and with the assisstant of geographic information systems (GIS),as a valuable
contribution to land degradation studies.
This study is based maiuly on the processing on two subsets of landsat5 TM images picked up
in August 1990 and 2007 respectively in order to facilitate comparision and were thengeometrically and radiometrcally calibrated ,to used for digital classification purposes using
maximum liklihoods classification or six spectral bands of
The heritage of the human peoples remains a beacon of data, after renewed awareness of them, open to their propositions, which are born from the womb of intertwined elements of customs, knowledge, arts, and literature ... Misleading the reception process, it may be something intriguing to identify with caution with the text sample selected by the current search procedures prepared according to the adoption of a descriptive therapist in a three-dimensional approach, as well as a comprehensive textual reference for that specific communication dimension within Anthology Andalusian - Moroccan poetry in the book of pleasure in the perception of the five senses Tahdib ibn Manzoor (d. 711 e) from the origin of Tivashi (d. 651 e) Tagged: Separat
... Show MoreWe use of multi-choice Goal Programming (MCGP), which is a developed model of Goal Programming where it is used in circumstances of the multiplicity and difference of goals when choosing between decision alternatives in cases of allocating resources, as it is a model that seeks to find the closest and best solutions to the specific values of the goals within the aspiration levels, as the first goal in the multi-choice goal programming model that is used to reduce the total cost of storage and shortage, while the other goal was to reduce the difference between the real demand that the hospitals need from the blood transfusion center and the units that already achieved. The case Iraqi Center
... Show MoreIn many oil-recovery systems, relative permeabilities (kr) are essential flow factors that affect fluid dispersion and output from petroleum resources. Traditionally, taking rock samples from the reservoir and performing suitable laboratory studies is required to get these crucial reservoir properties. Despite the fact that kr is a function of fluid saturation, it is now well established that pore shape and distribution, absolute permeability, wettability, interfacial tension (IFT), and saturation history all influence kr values. These rock/fluid characteristics vary greatly from one reservoir region to the next, and it would be impossible to make kr measurements in all of them. The unsteady-state approach was used to calculate the relat
... Show MoreThe oil and gas industry relies heavily on IT innovations to manage business processes, but the exponential generation of data has led to concerns about processing big data, generating valuable insights, and making timely decisions. Many companies have adopted Big Data Analytics (BDA) solutions to address these challenges. However, determining the adoption of BDA solutions requires a thorough understanding of the contextual factors influencing these decisions. This research explores these factors using a new Technology-Organisation-Environment (TOE) framework, presenting technological, organisational, and environmental factors. The study used a Delphi research method and seven heterogeneous panelists from an Oman oil and gas company
... Show MoreHartha Formation is an overburdened horizon in the X-oilfield which generates a lot of Non-Productive Time (NPT) associated with drilling mud losses. This study has been conducted to investigate the loss events in this formation as well as to provide geological interpretations based on datasets from nine wells in this field of interest. The interpretation was based on different analyses including wireline logs, cuttings descriptions, image logs, and analog data. Seismic and coherency data were also used to formulate the geological interpretations and calibrate that with the loss events of the Hartha Fm.
The results revealed that the upper part of the Hartha Fm. was identified as an interval capable of creating potentia
... Show MoreThe purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs
... Show More