Polyaniline (PANI) and Ag/PANI nanocomposite thin films have prepared by microwave induced plasma. The Ag powder of average particle size of 50 nm, were used to prepare Ag/PANI nanocomposite thin films. The Ag/PANI nanocomposite thin films prepared by polymerization in plasma and characterized by UV-VIS, FTIR, AFM and SEM to study the effect of silver nanoparticles on the optical properties, morphology and structure of the thin films. The optical properties studies showed that the energy band gap of the Ag/PANI (5%wt silver) decreased from 3.6 to 3.2 eV, where the substrate location varied from 4.4 to 3.4 cm from the axis of the cylindrical plasma chamber. Also the optical energy gap decreased systematically from 3.3 to 3 eV with increas
... Show MoreThere is a variety of artificial foot designs variable for use with prosthetic legs . Most of the design can be divided into two classes, articulated and non-articulated feet. one common non-articulated foot is the SACH . The solid ankle cushion heel foot referred to as the SACH foot has a rigid keel .
One key or the key factor in designing a new prosthesis is in the analysis of a patients response .
This view is the most important because if the foot does not provide functional , practical or cosmetically acceptable characteristics the patient will not feel comfortable with the prosthesis , therefore design and manufacturing a new foot is essential, this foot made from polyethylene, its different shape and characte
... Show MoreA direct, sensitive and efficient spectrophotometric method for the determination of nitrofurantoin
drug (NIT) in pure as well as in dosage form (capsules) was described. The suggested method was
based on reduction NIT drug using Zn/HCl and then coupling with 3-methyl-2-benzothiazolinone
hydrazone hydrochloride (MBTH) in the presence of ammonium ceric sulfate. Spectrophotometric
measurement was established by recording the absorbance of the green colored product at 610 nm.
Using the optimized reaction conditions, beer’s law was obeyed in the range of 0.5-30 μg/mL, with
good correlation coefficient of 0.9998 and limits of detection and quantitation of 0.163 and 0.544
μg/mL, respectively. The accuracy and
Tow simple, rapid and sensitive spectrophotometric methods for the determination of mesalazine in pharmaceutical preparations have been carried out. The proposed methods depend on oxidative coupling reaction of mesalazine with m-aminophenol in the existence of N-bromosuccinamide in alkaline medium (method A) and 2,6-dihydroxybenzoic acid in the existence of sodium metaperiodate in basic medium (method B) to produce colored products , show highest absorptions at 640 (nm) and 515 (nm), alternately. Beer’s law was consistent in concentrations extent of 1.25-30 and 0.5-12.5 (µg.mL-1) with molar absorptivity of 0.36×104 and 0.77×104 L.mol-1.cm<
... Show MoreThis work was influenced the separation and preconcentration steps were carried out to determination of metformin (MET) in pharmaceutical preparations and human serum samples. Complex formation method and cloud-point extraction (CPE) coupling with UV-Visible spectrophotometry were used to investigated of study target.The results has showed the best optical characteristic for calibration curve and statistical data which were obtained under optimum conditions. The first method is based on the reaction of MET with nickel (II) in alkaline medium an absorption maximum ?)max) at 434nm. ''Beer's low'' is obeyed in the concentration range (10-100µg.ml-1) with molar absorptivity of 3.9x103 L.mol-1.cm-1.The limit of detection and quantitation valu
... Show MoreCombining ultrasonic irradiation and the Fenton process as a sono-Fenton process, the chemical oxygen demand (COD) in refinery wastewater was successfully eliminated using response surface methodology (RSM) with central composite design (CCD). The impact of two main influential operational parameters (iron dosage and reaction time) on the COD removal from wastewater generated by an Iraqi petroleum refinery facility was explored. Removal of 85.81% was attained under the optimal conditions of 21 minutes and 0.289 mM of concentration. Additionally, the results revealed that the concentration of has the highest effect on the COD elimination, followed by reaction time. The high R2 value (96.40%) validated the strong fit of the mo
... Show MoreOptimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show More