Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the best optimal features while reducing the amount of data. Lastly, diagnosis prediction (classification) is achieved using learnable classifiers. The novel framework for the extraction and selection of features is based on deep learning, auto-encoder, and ACO. The performance of the proposed approach is evaluated using two medical image datasets: chest X-ray (CXR) and magnetic resonance imaging (MRI) for the prediction of the existence of COVID-19 and brain tumors. Accuracy is used as the main measure to compare the performance of the proposed approach with existing state-of-the-art methods. The proposed system achieves an average accuracy of 99.61% and 99.18%, outperforming all other methods in diagnosing the presence of COVID-19 and brain tumors, respectively. Based on the achieved results, it can be claimed that physicians or radiologists can confidently utilize the proposed approach for diagnosing COVID-19 patients and patients with specific brain tumors.
The 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of ads
... Show Moreان تصنيع رمال مطلية بأوكسيد الحديد من خلال ترسيب الجزيئات النانوية لذلك الاوكسيد على سطوح الرمال واستخدامها في الحاجز التفاعلي النفاذ لإزالة ايونات الكادميوم والنحاس من المياه الجوفية الملوثة الهدف الرئيسي للدراسة الحالية. تم توصيف بيانات الامتزاز نتيجة تفاعل المادة المازة مع المادة الممتزة قيد الدراسة بشكل جيد من خلال نموذج لانكمير والذي كان أفضل من نموذج فراندلش. لقد وجد ان اعلى قيم لقابلية الامتزاز با
... Show MoreAcinetobacter baumannii (A. baumannii ) is considered a critical healthcare problem for patients in intensive care units due to its high ability to be multidrug-resistant to most commercially available antibiotics. The aim of this study is to develop a colorimetric assay to quantitatively detect the target DNA of A. baumannii based on unmodified gold nanoparticles (AuNPs) from different clinical samples (burns, surgical wounds, sputum, blood and urine). A total of thirty-six A. baumannii clinical isolates were collected from five Iraqi hospitals in Erbil and Mosul provinces within the period from September 2020 to January 2021. Bacterial isolation and biochemical identification of isolates
... Show MoreType 2 diabetes mellitus which abbreviate as T2DM is a complex endocrine and metabolic disorder arisingfrom genetic and environmental factors interaction which in turn induce various degrees of insulin functionalalteration on peripheral tissues. Globally, T2DM has develop into a public health problem. Therefore, Thestudy included (75) patients(37 female and 38 males) suffering from T2DM who visit al-kadhimiya teachinghospital with age range 20-80 years and (70) as healthy controls with age range 20-70 years. All studiedgroups were evaluated CMV IgG by ELISA,B. urea, S. Creatinine, cholesterol and triglyceride the resultsshowed that B.urea, S.creatinine and serum cholesterol showed a non-significant differences between studiedgroup,
... Show More